Background The coronavirus disease (COVID-19) pandemic has led to rapid acceleration in the deployment of new digital technologies to improve both accessibility to and quality of care, and to protect staff. Mixed-reality (MR) technology is the latest iteration of telemedicine innovation; it is a logical next step in the move toward the provision of digitally supported clinical care and medical education. This technology has the potential to revolutionize care both during and after the COVID-19 pandemic. Objective This pilot project sought to deploy the HoloLens2 MR device to support the delivery of remote care in COVID-19 hospital environments. Methods A prospective, observational, nested cohort evaluation of the HoloLens2 was undertaken across three distinct clinical clusters in a teaching hospital in the United Kingdom. Data pertaining to staff exposure to high-risk COVID-19 environments and personal protective equipment (PPE) use by clinical staff (N=28) were collected, and assessments of acceptability and feasibility were conducted. Results The deployment of the HoloLens2 led to a 51.5% reduction in time exposed to harm for staff looking after COVID-19 patients (3.32 vs 1.63 hours/day/staff member; P=.002), and an 83.1% reduction in the amount of PPE used (178 vs 30 items/round/day; P=.02). This represents 222.98 hours of reduced staff exposure to COVID-19, and 3100 fewer PPE items used each week across the three clusters evaluated. The majority of staff using the device agreed it was easy to set up and comfortable to wear, improved the quality of care and decision making, and led to better teamwork and communication. In total, 89.3% (25/28) of users felt that their clinical team was safer when using the HoloLens2. Conclusions New technologies have a role in minimizing exposure to nosocomial infection, optimizing the use of PPE, and enhancing aspects of care. Deploying such technologies at pace requires context-specific information security, infection control, user experience, and workflow integration to be addressed at the outset and led by clinical end-users. The deployment of new telemedicine technology must be supported with objective evidence for its safety and effectiveness to ensure maximum impact.
Rhinovirus infection is common and usually causes mild, self-limiting upper respiratory tract symptoms. Rhinoviruses can cause exacerbation of chronic respiratory diseases, such as asthma or chronic obstructive pulmonary disease, leading to a significant burden of morbidity and mortality. There has been a great deal of progress in efforts to understand the immunological basis of rhinovirus infection. However, despite a number of in vitro and in vivo attempts, there have been no effective treatments developed. This review article summarises the up to date virological and immunological understanding of these infections. We discuss the challenges researchers face, and key solutions, in their work to investigate potential therapies including in vivo rhinovirus challenge studies. Finally, we explore past and present experimental therapeutic strategies employed in the treatment of rhinovirus infections and highlight promising areas of future work.
RATIONALE: COVID-19 poses a unique challenge; caring for patients with a novel, infectious disease whilst protecting staff. Some interventions used to give oxygen therapy are aerosol generating procedures. Staff delivering such interventions require PPE and are exposed to a significant viral load resulting in sick days and even death. We aim to reduce this risk using an augmented-reality communication device: The HoloLens by Microsoft. OBJECTIVES: In a tertiary centre in London we aim to implement HoloLens technology, allowing other medical staff to remotely join the consulting clinician when in a high-risk patient area delivering oxygen therapy. The study primary outcome was to reduce the exposure to staff and demonstrate non-inferiority staff satisfaction when compared to not using the device. Our secondary outcome was to reduce extrapolated PPE costs when using the device. METHODS: Our study was conducted in March and April 2020, within a respiratory unit delivering aerosolising oxygen therapies (High flow nasal oxygen, Continuous positive airway pressure and non-invasive ventilation) to patients with suspected or confirmed COVID-19 infection. MEASUREMENTS: Self-reported questionnaires to assess satisfaction in key areas of patient care. An infrared people counting device was also used to assess staff in and out of the unit. MAIN RESULTS: Mean self-reported time in the high-risk zone was less when using HoloLens (2.69 hours) compared to usual practice (3.96 hours) although this difference was not statistically significant (p = 0.3657). HoloLens showed non-inferiority when compared to usual practice in staff satisfaction score for all domains. Furthermore, mean staff satisfaction score encouragingly improved when using HoloLens. Self-reported PPE counts from this study showed 12 staff members changing PPE 25.8 times per shift, almost double the 13.5 times in the HoloLens count. CONCLUSIONS: We have demonstrated HoloLens can reduce the number of staff exposed to aerosol generating areas in a novel infectious disease. Our results show it did not impair communication, medical staff availability or end of life care. HoloLens technology may also reduce the use of PPE, which has equipment availability and cost benefits. This study provides grounding for further use of the HoloLens device by bringing a bedside experience to experts remote to the situation.
The nose provides a route of access to the body for inhalants and fluids. Unsurprisingly it has a strong immune defense system, with involvement of innate (e.g., epithelial barrier, muco- ciliary clearance, nasal secretions with interferons, lysozyme, nitric oxide) and acquired (e.g., secreted immunoglobulins, lymphocytes) arms. The lattice network of dendritic cells surrounding the nostrils allows rapid uptake and sampling of molecules able to negotiate the epithelial barrier. Despite this many respiratory infections, including SARS-CoV2, are initiated through nasal mucosal contact, and the nasal mucosa is a significant “reservoir” for microbes including Streptococcus pneumoniae, Neisseria meningitidis and SARS -CoV-2. This review includes consideration of the augmentation of immune defense by the nasal application of interferons, then the reduction of unnecessary inflammation and infection by alteration of the nasal microbiome. The nasal mucosa and associated lymphoid tissue (nasopharynx-associated lymphoid tissue, NALT) provides an important site for vaccine delivery, with cold-adapted live influenza strains (LAIV), which replicate intranasally, resulting in an immune response without significant clinical symptoms, being the most successful thus far. Finally, the clever intranasal application of antibodies bispecific for allergens and Intercellular Adhesion Molecule 1 (ICAM-1) as a topical treatment for allergic and RV-induced rhinitis is explained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.