The olfactory epithelium of fish contains three intermingled types of olfactory receptor neurons (ORNs): ciliated, microvillous, and crypt. The present experiments were undertaken to test whether the different types of ORNs respond to different classes of odorants via different families of receptor molecules and G-proteins corresponding to the morphology of the ORN. In catfish, ciliated ORNs express OR-type receptors and Galpha(olf). Microvillous ORNs are heterogeneous, with many expressing Galpha(q)/11, whereas crypt ORNs express Galpha(o). Retrograde tracing experiments show that ciliated ORNs project predominantly to regions of the olfactory bulb (OB) that respond to bile salts (medial) and amino acids (ventral) (Nikonov and Caprio, 2001). In contrast, microvillous ORNs project almost entirely to the dorsal surface of the OB, where responses to nucleotides (posterior OB) and amino acids (anterior OB) predominate. These anatomical findings are consistent with our pharmacological results showing that forskolin (which interferes with Galpha(olf)/cAMP signaling) blocks responses to bile salts and markedly reduces responses to amino acids. Conversely, U-73122 and U-73343 (which interfere with Galpha(q)/11/phospholipase C signaling) diminish amino acid responses but leave bile salt and nucleotide responses essentially unchanged. In summary, our results indicate that bile salt odorants are detected predominantly by ciliated ORNs relying on the Galpha(olf)/cAMP transduction cascade. Nucleotides are detected by microvillous ORNs using neither Galpha(olf)/cAMP nor Galpha(q)/11/PLC cascades. Finally, amino acid odorants activate both ciliated and microvillous ORNs but via different transduction pathways in the two types of cells.
Electrophysiological experiments indicate that olfactory receptors of the channel catfish, Ictalurus punctatus, contain different receptor sites for the acidic (A), basic (B), and neutral amino acids ; further, at least two partially interacting neutral sites exist, one for the hydrophilic neutral amino acids containing short side chains (SCN), and the second for the hydrophobic amino acids containing long side chains (LCN) . The extent of cross-adaptation was determined by comparing the electro-olfactogram (EOG) responses to 20 "test" amino acids during continuous bathing of the olfactory mucosa with water only (control) to those during each of the eight "adapting" amino acid regimes. Both the adapting and test amino acids were adjusted in concentrations to provide approximately equal response magnitudes in the unadapted state . Under all eight adapting regimes, the test FOG responses were reduced from those obtained in the unadapted state, but substantial quantitative differences resulted, depending upon the molecular structure of the adapting stimulus . Analyses of the patterns of EOG responses to the test stimuli identified and characterized the respective "transduction processes," a term used to describe membrane events initiated by a particular subset of amino acid stimuli that are intricately linked to the origin of the olfactory receptor potential . Only when the stimulus compounds interact with different transduction processes are the stimuli assumed to bind to different membrane "sites." Four relatively independent L-a-amino acid transduction processes (and thus at least four binding sites) identified in this report include : (a) the A process for aspartic and glutamic acids ; (b) the B process for arginine and lysine ; (c) the SCN process for glycine, alanine, serine, glutamine, and possibly cysteine ; (d) the LCN process for methionine, ethionine, valine, norvaline, leucine, norleucine, glutamic acid-7-methyl ester, histidine, phenylalanine, and also possibly cysteine . The specificities of these olfactory transduction processes in the catfish are similar to those for the biochemically determined receptor sites for amino acids in other species of fishes and to amino acid transport specificities in tissues of a variety of organisms .Address reprint requests to Dr.
Horseradish peroxidase tracing and extracellular electrophysiological recording techniques were employed to delineate prosencephalic connections of the gustatory system in ictalurid catfishes. The isthmic secondary gustatory nucleus projects rostrally to several areas of the ventral diencephalon including the nucleus lobobulbaris and the nucleus lateralis thalami. Injections of HRP in the vicinity of the nucleus lobobulbaris reveal an ascending projection to the telencephalon terminating in the area dorsalis pars medialis (Dm) and the medial region of area dorsalis pars centralis (Dc). Conversely, injections of HRP into the gustatory region of area dorsalis pars medialis label small neurons in the nucleus lobobulbaris. Gustatory neurons in the telencephalon send descending projections via the medial and lateral forebrain bundles to several nuclei in the anterior and ventroposterior diencephalon. The nucleus lateralis thalami, a diencephalic nucleus, receives ascending gustatory projections from the secondary gustatory nucleus but does not project to the telencephalon. Neurons in both the nucleus lateralis thalami and the telencephalic gustatory target exhibit multiple extraoral and oral receptive fields and complex responses to chemical (taste) and tactile stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.