SSZ-70 is synthesized using 1,3-bis(isobutyl)imidazolium, 1,3-bis(cyclohexyl)imidazolium, and 1,3-bis(cycloheptyl)imidazolium structure directing agents (SDAs), and the solids obtained are characterized by powder X-ray diffraction (XRD), 29 Si magic angle spinning nuclear magnetic resonance (MAS NMR), electron microscopy, nitrogen and hydrocarbon adsorption, and thermogravimetric analyses. The physicochemical properties of SSZ-70 show that it is a new molecular sieve that has similarities to MWW-type materials. The catalytic behavior of SSZ-70 is evaluated through the use of the constraint index (CI) test. Distinct differences in the reactivity between Al-SSZ-70 and SSZ-25 (MWW) are observed and are the consequences of the structural differences between these two molecular sieves.
Catalytic hydropyrolysis of loblolly pine was studied in a high-pressure fluidized bed reactor using a NiMo hydrotreating catalyst. Hydropyrolysis temperature (375–475 °C) influenced the product distribution, product composition, H2 consumption, and process carbon efficiency. The material balances ranged from 84% to 106% with an average of 91%. The organic liquid yields including C4–C6 gases ranged from 20 wt % to 24 wt %, and the gas yields were between 11 and 27 wt %. The yield of the solids varied from 8 wt % to 26 wt %. Catalyst stability was studied at 450 °C and 20.68 bar (300 psig) total pressure with 40 vol % H2 for 10 days. The organic liquid product yield (22.5 ± 1.35 wt %) and quality (2.8 ± 1 wt % O) were consistent over 10 days of experiments with the same catalyst exposed to daily hydropyrolysis, regeneration, and reduction cycles indicating stable and steady-state catalyst performance over this time period.
Biomass pyrolysis and hydropyrolysis have been studied in a high-temperature, high-pressure fluidized bed reactor system. The reactor system can be operated at reaction temperatures up to 982°C (1800°F) and pressures up to 4 MPa (600 psi). Baseline biomass pyrolysis experiments with an inert heat transfer material were conducted at various pressures and hydrogen partial pressures to determine the effect of these variables on product yields and quality, defined by the amount of oxygen in the hydrocarbon-rich liquid product. Biomass hydropyrolysis was performed at temperatures between 375 and 400°C at 2 MPa (300 psi) with selected hydroprocessing catalysts. The most promising catalyst was exposed to 2.9 kg of woody biomass for a total of 21.7 h time on stream over a 10 day period. The cumulative mass balance during this period was 83%, and the overall C 4 + yield was 16 wt %. This corresponds to 31% of the energy in the input biomass feedstock recovered in the hydrocarbon-rich liquid that contained an average of 4.2 wt % oxygen on a dry basis.
RTI International is developing an advanced biofuels technology that integrates a catalytic biomass pyrolysis step and a hydroprocessing step to produce infrastructure-compatible biofuels. At the current stage of development, the catalytic biomass pyrolysis process is being scaled-up in a 1 tonne per day (1 TPD) pilot plant based on a single-loop transport reactor design with continuous catalyst circulation and regeneration. The chemistry of biomass pyrolysis is manipulated by the catalyst and by controlling the pyrolysis temperature, vapor residence time, and biomass-to-catalyst ratio. The pilot unit has been successfully operated with a novel catalyst that produces a bio-crude intermediate with 24 wt% oxygen. Product yields and composition in the pilot plant are consistent with results obtained in a laboratory-scale 2.54 cm diameter bubbling fluidized bed reactor. The overall mass balance was 93%, while the carbon closure was 83%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.