The real-time 3D system provided good estimation of strictly quantified reference RV stroke volumes, suggesting an important application of this new 3D method.
Piezoelectric micromachined ultrasound transducer (PMUT) matrix arrays were fabricated containing novel through-silicon interconnects and integrated into intracardiac catheters for in vivo real-time 3-D imaging. PMUT arrays with rectangular apertures containing 256 and 512 active elements were fabricated and operated at 5 MHz. The arrays were bulk micromachined in silicon-on-insulator substrates, and contained flexural unimorph membranes comprising the device silicon, lead zirconate titanate (PZT), and electrode layers. Through-silicon interconnects were fabricated by depositing a thin-film conformal copper layer in the bulk micromachined via under each PMUT membrane and photolithographically patterning this copper layer on the back of the substrate to facilitate contact with the individually addressable matrix array elements. Cable assemblies containing insulated 45-AWG copper wires and a termination silicon substrate were thermocompression bonded to the PMUT substrate for signal wire interconnection to the PMUT array. Side-viewing 14-Fr catheters were fabricated and introduced through the femoral vein in an adult porcine model. Real-time 3-D images were acquired from the right atrium using a prototype ultrasound scanner. Full 60° × 60° volume sectors were obtained with penetration depth of 8 to 10 cm at frame rates of 26 to 31 volumes per second.
Piezoelectric micromachined ultrasound transducers (pMUTs) are a new approach for the construction of 2-D arrays for forward-looking 3-D intravascular (IVUS) and intracardiac (ICE) imaging. Two-dimensional pMUT test arrays containing 25 elements (5 x 5 arrays) were bulk micromachined in silicon substrates. The devices consisted of lead zirconate titanate (PZT) thin film membranes formed by deep reactive ion etching of the silicon substrate. Element widths ranged from 50 to 200 microm with pitch from 100 to 300 mum. Acoustic transmit properties were measured in de-ionized water with a calibrated hydrophone placed at a range of 20 mm. Measured transmit frequencies for the pMUT elements ranged from 4 to 13 MHz, and mode of vibration differed for the various element sizes. Element capacitance varied from 30 to over 400 pF depending on element size and PZT thickness. Smaller element sizes generally produced higher acoustic transmit output as well as higher frequency than larger elements. Thicker PZT layers also produced higher transmit output per unit electric field applied. Due to flexure mode operation above the PZT coercive voltage, transmit output increased nonlinearly with increased drive voltage. The pMUT arrays were attached directly to the Duke University T5 Phased Array Scanner to produce real-time pulse-echo B-mode images with the 2-D pMUT arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.