Relative to standard red/green/blue (RGB) imaging systems, hyperspectral imaging systems offer superior capabilities but tend to be expensive and complex, requiring either a mechanically complex push-broom line scanning method, a tunable filter, or a large set of light emitting diodes (LEDs) to collect images in multiple wavelengths. This paper proposes a new methodology to support the design of a hypothesized system that uses three imaging modes—fluorescence, visible/near-infrared (VNIR) reflectance, and shortwave infrared (SWIR) reflectance—to capture narrow-band spectral data at only three to seven narrow wavelengths. Simulated annealing is applied to identify the optimal wavelengths for sparse spectral measurement with a cost function based on the accuracy provided by a weighted k-nearest neighbors (WKNN) classifier, a common and relatively robust machine learning classifier. Two separate classification approaches are presented, the first using a multi-layer perceptron (MLP) artificial neural network trained on sparse data from the three individual spectra and the second using a fusion of the data from all three spectra. The results are compared with those from four alternative classifiers based on common machine learning algorithms. To validate the proposed methodology, reflectance and fluorescence spectra in these three spectroscopic modes were collected from fish fillets and used to classify the fillets by species. Accuracies determined from the two classification approaches are compared with benchmark values derived by training the classifiers with the full resolution spectral data. The results of the single-layer classification study show accuracies ranging from ~68% for SWIR reflectance to ~90% for fluorescence with just seven wavelengths. The results of the fusion classification study show accuracies of about 95% with seven wavelengths and more than 90% even with just three wavelengths. Reducing the number of required wavelengths facilitates the creation of rapid and cost-effective spectral imaging systems that can be used for widespread analysis in food monitoring/food fraud, agricultural, and biomedical applications.
In this paper, we present a set of algorithms to enable the development of inexpensive hyperspectral sensors capable of estimating tissue oxygenation for wound monitoring. Estimation is conducted using the extended modified Lambert–Beer law, which has previously been proven robust to differences in melanin concentration. We introduce a novel wavelength selection algorithm that enables the estimation to be performed with high accuracy using only a small number (5–10) of wavelengths. Validation performed with Monte Carlo simulation data resulted in prediction errors <1%, with no significant differences among various skin types, for as few as five wavelengths under conditions representing both high precision instrumentation and more cost-effective sensors designed with inexpensive LEDs and/or filters. Validation with in vivo data collected from an occlusion study with 13 Asian volunteers showed statistically significant separation between the estimates for the at-rest and arterial occlusion states. Additional stability testing proved the proposed algorithms to be robust to small changes in the selected wavelengths as may occur in a real LED due to manufacturing tolerances and temperature fluctuations. This work concluded that the development of an inexpensive hyperspectral device for wound monitoring in all skin types is feasible using just a small number of wavelengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.