SummaryMorphogen signaling is critical for the growth and patterning of tissues in embryos and adults, but how morphogen signaling gradients are generated in tissues remains controversial. The morphogen Nodal was proposed to form a long-range signaling gradient via a reaction-diffusion system, on the basis of differential diffusion rates of Nodal and its antagonist Lefty. Here we use a specific zebrafish Nodal biosensor combined with immunofluorescence for phosphorylated Smad2 to demonstrate that endogenous Nodal is unlikely to diffuse over a long range. Instead, short-range Nodal signaling activation in a temporal window is sufficient to determine the dimensions of the Nodal signaling domain. The size of this temporal window is set by the differentially timed production of Nodal and Lefty, which arises mainly from repression of Lefty translation by the microRNA miR-430. Thus, temporal information is transformed into spatial information to define the dimensions of the Nodal signaling domain and, consequently, to specify mesendoderm.
Hemimetabolous insects undergo an ancestral mode of development in which embryos hatch into first nymphs that resemble miniature adults. While recent studies have shown that homeotic (hox) genes establish segmental identity of first nymphs during embryogenesis, no information exists on the function of these genes during post-embryogenesis. To determine whether and to what degree hox genes influence the formation of adult morphologies, we performed a functional analysis of Sex combs reduced (Scr) during post-embryonic development in Oncopeltus fasciatus. The main effect was observed in prothorax of Scr-RNAi adults, and ranged from significant alterations in its size and shape to a near complete transformation of its posterior half toward a T2-like identity. Furthermore, while the consecutive application of Scr-RNAi at both of the final two post-embryonic stages (fourth and fifth) did result in formation of ectopic wings on T1, the individual applications at each of these stages did not. These experiments provide two new insights into evolution of wings. First, the role of Scr in wing repression appears to be conserved in both holo- and hemimetabolous insects. Second, the prolonged Scr-depletion (spanning at least two nymphal stages) is both necessary and sufficient to restart wing program. At the same time, other structures that were previously established during embryogenesis are either unaffected (T1 legs) or display only minor changes (labium) in adults. These observations reveal a temporal and spatial divergence of Scr roles during embryonic (main effect in labium) and post-embryonic (main effect in prothorax) development.
SummarySequential addition of segments in the posteriorly growing end of the embryo is a developmental mechanism common to many bilaterians. However, posterior growth and patterning in most animals also entails the establishment of a ‘posterior organiser’ that expresses the Caudal and Wnt proteins and has been proposed to be an ancestral feature of animal development. We have studied the functional relationships between the Wnt-driven organiser and the segmentation mechanisms in a basal insect, the cockroach Periplaneta americana. Here, posteriorly-expressed Wnt1 promotes caudal and Delta expression early in development to generate a growth zone from which segments will later bud off. caudal maintains the undifferentiated growth zone by dampening Delta expression, and hence Notch-mediated segmentation occurs just outside the caudal domain. In turn, Delta expression maintains Wnt1, maintaining this posterior gene network until all segments have formed. This feedback between caudal, Wnt and Notch-signalling in regulating growth and segmentation seems conserved in other arthropods, with some aspects found even in vertebrates. Thus our findings not only support an ancestral Wnt posterior organiser, but also impinge on the proposals for a common origin of segmentation in arthropods, annelids and vertebrates.
The cockroach, Periplaneta americana represents a basal insect lineage that undergoes the ancestral hemimetabolous mode of development. Here, we examine the embryonic and post-embryonic functions of the hox gene Scr in Periplaneta as a way of better understanding the roles of this gene in the evolution of insect body plans. During embryogenesis, Scr function is strictly limited to the head with no role in the prothorax. This indicates that the ancestral embryonic function of Scr was likely restricted to the head, and that the posterior expansion of expression in the T1 legs may have preceded any apparent gain of function during evolution. In addition, Scr plays a pivotal role in the formation of the dorsal ridge, a structure that separates the head and thorax in all insects. This is evidenced by the presence of a supernumerary segment that occurs between the labial and T1 segments of RNAiScr first nymphs and is attributed to an alteration in engrailed (en) expression. The fact that similar Scr phenotypes are observed in Tribolium but not in Drosophila or Oncopeltus reveals the presence of lineage-specific variation in the genetic architecture that controls the formation of the dorsal ridge. In direct contrast to the embryonic roles, Scr has no function in the head region during post-embryogenesis in Periplaneta, and instead, strictly acts to provide identity to the T1 segment. Furthermore, the strongest Periplaneta RNAiScr phenotypes develop ectopic wing-like tissue that originates from the posterior region of the prothoracic segment. This finding provides a novel insight into the current debate on the morphological origin of insect wings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.