Miscanthus is a genus of high‐yielding perennial rhizomatous grasses with C4 photosynthesis. Extensive field trials of Miscanthus spp. biomass production in Europe during the past decade have shown several limitations of the most widely planted clone, M. × giganteus Greef et Deu. A 3‐yr study was conducted at five sites in Europe (Sweden, Denmark, England, Germany, and Portugal) to evaluate adaptation and biomass production potential of four acquisitions of M. × giganteus (No. 1–4) and 11 other genotypes, including M. sacchariflorus (Maxim.) Benth. (No. 5), M. sinensis Andersson (No. 11–15), and hybrids (No. 6–10). At each site, three randomized blocks containing a 5‐ by 5‐m plot of each genotype were established (except in Portugal where there were two blocks) with micropropagated plants at 2 plants m−2. In Sweden and Denmark, only M. sinensis and its hybrids satisfactorily survived the first winter following planting. Mean annual yields across all sites for all surviving genotypes increased each year from 2 t ha−1 dry matter following the first year of growth to 9 and 18 t ha−1 following the second and third year, respectively. Highest autumn yields at sites in Sweden, Denmark, England, and Germany were 24.7 (M. sinensis hybrid no. 8), 18.2 (M. sinensis hybrid no. 10), 18.7 (M. × giganteus no. 3), and 29.1 t ha−1 (M. × giganteus no. 4), respectively. In Portugal, where irrigation was used, the top‐yielding genotype produced 40.9 t ha−1 dry matter (M. sinensis hybrid no. 7). Highest‐yielding genotypes in Sweden and Denmark were among the lowest yielding in Portugal and Germany, demonstrating strong genotype × environment interactions.
Clifton-Brown, J. C., Breuer, J., Jones, M. B. (2007). Carbon mitigation by the energy crop, Miscanthus. Global Change Biology. 13 (11), 2296-2307 Sponsorship: EU JOUB-0069 / AIR-CT92-0294 RAE2008Biomass crops mitigate carbon emissions by both fossil fuel substitution and sequestration of carbon in the soil. We grew Miscanthus x giganteus for 16 years at a site in southern Ireland to (i) compare methods of propagation, (ii) compare response to fertilizer application and quantify nutrient offtakes, (iii) measure long-term annual biomass yields, (iv) estimate carbon sequestration to the soil and (v) quantify the carbon mitigation by the crop. There was no significant difference in the yield between plants established from rhizome cuttings or by micro-propagation. Annual off-takes of N and P were easily met by soil reserves, but soil K reserves were low in unfertilized plots. Potassium deficiency was associated with lower harvestable yield. Yields increased for 5 years following establishment but after 10 years showed some decline which could not be accounted for by the climate driven growth model MISCANMOD. Measured yields were normalized to estimate both autumn (at first frost) and spring harvests (15 March of the subsequent year). Average autumn and spring yields over the 15 harvest years were 13.4?1.1 and 9.0?0.7 t DW ha?1 yr?1 respectively. Below ground biomass in February 2002 was 20.6?4.6 t DW ha?1. Miscanthus derived soil organic carbon sequestration detected by a change in 13C signal was 8.9?2.4 t C ha?1 over 15 years. We estimate total carbon mitigation by this crop over 15 years ranged from 5.2 to 7.2 t C ha?1 yr?1 depending on the harvest time.Peer reviewe
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.