SummaryTumors escape immunological rejection by a diversity of mechanisms. In this report, we demonstrate that the colon cancer cell SW620 expresses functional Fas ligand (FasL), the triggering agent of Fas receptor (FasR)-mediated apoptosis within the immune system. FasL mRNA and cell surface FasL were detected in SW620 cells using reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemical staining, respectively. We show that SW620 kills Jurkat T cells in a Fas-mediated manner. FasR-specific antisense oligonucleotide treatment, which transiently inhibited FasR expression, completely protected Jurkat cells from killing by SW620. FasL-specific antisense oligonucleotide treatment of SW620 inhibited its Jurkat-killing activity. FasL has recently been established as a mediator of immune privilege in mouse retina and testis. Our finding that colon cancer cells express functional FasL suggests it may play an analogous role in bestowing immune privilege on human tumors. HT29 and SW620 colon cancer cells were found to express FasR mRNA and cell surface FasR using RT-PCR and immunofluorescence flow cytometry, respectively. However, neither of these cells underwent apoptosis after treatment by the anti-FasR agonistic monoclonal antibody CH11. Our results therefore suggest a Fas counterattack model for immune escape in colon cancer, whereby the cancer cells resist Fas-mediated T cell cytotoxicity but express functional FasL, an apoptotic death signal to which activated T cells are inherently sensitive.
The enteric flora comprises approximately 95% of the total number of cells in the human body and can elicit immune responses while protecting against microbial pathogens. However, the resident bacterial flora of the gastrointestinal tract may also be implicated in the pathogenesis of diseases such as inflammatory bowel disease (ulcerative colitis and Crohn disease). The objectives of the Probiotic Research Group based at University College Cork were to isolate and identify lactic acid bacteria exhibiting beneficial probiotic traits, such as bile tolerance in the absence of deconjugation activity, acid resistance, adherence to host epithelial tissue, and in vitro antagonism of pathogenic microorganisms or those suspected of promoting inflammation. To isolate potentially effective probiotic bacteria, we screened the microbial population adhering to surgically resected segments of the gastrointestinal tract (the environment in which they may subsequently be reintroduced and required to function). In total, 1500 bacterial strains from resected human terminal ilea were assessed. From among these organisms, Lactobacillus salivarius subsp. salivarius strain UCC118 was selected for further study. In mouse feeding trials, milk-borne L. salivarius strain UCC118 could successfully colonize the murine gastrointestinal tract. A human feeding study conducted in 80 healthy volunteers showed that yogurt can be used as a vehicle for delivery of strain UCC118 to the human gastrointestinal tract with considerable efficacy in influencing gut flora and colonization. In summary, we developed criteria for in vitro selection of probiotic bacteria that may reflect certain in vivo effects on the host such as modulation of gastrointestinal tract microflora.
In recent years, the time-honored reputation of lactobacilli as promoters of gastrointestinal and female urogenital health has been qualified. This has occurred due to a rare association with human infection in the presence of certain predisposing factors and their potential to act as a source of undesirable antibiotic resistance determinants to other members of the indigenous microbiota. This necessitates greater caution in their selection for use in microbial adjunct nutrition and disease management (prophylaxis and therapy). It was against this background that 46 Lactobacillus strains from human and dairy sources were assayed for susceptibility to 44 antibiotics. All strains were resistant to a group of 14 antibiotics, which included inhibitors of cell wall synthesis (cefoxitin [30 microg] and aztreonam [30 microg]), protein synthesis (amikacin [30 microg], gentamicin [10 microg], kanamycin [30 microg], and streptomycin [10 microg]), nucleic acid synthesis (norfloxacin [10 microg], nalidixic acid [30 microg], sulphamethoxazole [100 microg], trimethoprim [5 microg], co-trimoxazole [25 microg], and metronidazole [5 microg]), and cytoplasmic membrane function (polymyxin B [300 microg] and colistin sulphate [10 microg]). All strains were susceptible to tetracycline (30 microg), chloramphenicol (30 microg), and rifampicin (5 microg). Four human strains and one dairy strain exhibited atypical resistance to a penicillin, bacitracin (10 microg), and/or nitrofurantoin (300 microg). One human strain was also resistant to erythromycin (15 microg) and clindamycin (2 microg). These resistances may have been acquired due to antibiotic exposure in vivo, but conclusive evidence is lacking in this regard. Seven microorganism-drug combinations were evaluated for beta-lactamase activity using synergy and nitrocefin tests. The absence of activity suggested that cell wall impermeability appeared responsible for beta-lactam resistance. The occurrence of a minority of lactobacilli with undesirable, atypical resistance to certain antibiotics demonstrates that not all strains are suitable for use as probiotics or bacteriotherapeutic agents. The natural resistance of lactobacilli to a wide range of clinically important antibiotics may enable the development of antibiotic/probiotic combination therapies for such conditions as diarrhea, female urogenital tract infection, and infective endocarditis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.