Small-angle neutron scattering (SANS) was used to investigate the size and shape of zwitterionic dodecyl phosphocholine (C12PC) micelles formed at various concentrations above its critical micelle concentration (CMC = 0.91 mM). The predominant spherical shape of micelles is revealed by SANS while the average micellar size was found to be broadly consistent with the hydrodynamic diameters determined by dynamic light scattering (DLS). Cryogenic tunneling electron microscopy (cryo-TEM) shows a uniform distribution of structures, proposing micelle monodispersity ( Supporting Information ). H/D substitution was utilized to selectively label the chain, head, or entire surfactant so that structural distributions within the micellar assembly could be investigated using fully protonated, head-deuterated, and tail-deuterated PC surfactants in D2O and fully deuterated surfactants in H2O. Using the analysis software we have developed, the four C12PC contrasts at a given concentration were simultaneously analyzed using various core-shell models consisting of a hydrophobic core and a shell representing hydrated polar headgroups. Results show that at 10 mM, C12PC micelles can be well represented by a spherical core-shell model with a core radius and shell thicknesses of 16.9 ± 0.5 and 10.2 ± 2.0 Å (total radius 27.1 ± 2.0 Å), respectively, with a surfactant aggregation number of 57 ± 5. As the concentration was increased, the SANS data revealed an increase in core-shell mixing, characterized by the emergence of an intermediate mixing region at the spherical core-shell interface. C12PC micelles at 100 mM were found to have a core radius and shell thicknesses of 19.6 ± 0.5 and 7.8 ± 2.0 Å, with an intermediate mixing region of 3.0 ± 0.5 Å. Further reduction in the shell thickness with concentration was also observed, coupled with an increased mixing of the core and shell regions and a reduction in miceller hydration, suggesting that concentration has a significant influence on surfactant packing and aggregation within micelles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.