Innovations from current researches on cloud computing such as applying bio-inspired computing techniques have brought new level solutions in offloading mechanisms. With the growing trend of mobile devices, mobile cloud computing can also benefit from applying bio-inspired techniques. Energy-efficient offloading mechanisms on mobile cloud systems are needed to reduce the total energy consumption but previous works did not consider energy consumption in the decision-making of task distribution. This paper proposes the Particle Swarm Optimization (PSO) as an offloading strategy of cloudlet to data centers where each task is represented as a particle during the process. The collected tasks are classified using K-means clustering on the cloudlet before applying PSO in order to minimize the number of particles and to locate the best data center for a specific task, instead of considering all tasks during the PSO process. Simulation results show that the proposed PSO excels in choosing data centers with respect to energy consumption, while it has accumulated a little more processing time compared to the other approaches.
Offloading tasks from mobile devices to available cloud servers were improved since the introduction of the cloudlet. With the implementation of dynamic offloading algorithms, mobile devices can choose the appropriate server for the set of tasks. However, current task distribution approaches do not consider the number of VM, which can be a critical factor in the decision making. This paper proposes a dynamic task distribution on clustered data centers. A proportional VM migration approach is also proposed, where it migrates virtual machines to the cloud servers proportionally according to their allocated CPU, in order to prevent overloading of resources in servers. Moreover, we included the resource capacity of each data center in terms of the maximum CPU in order to improve the migration approach in cloud servers. Simulation results show that the proposed mechanism for task distribution greatly improves the overall performance of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.