To define glycemic thresholds for activation of counterregulatory hormone secretion, initiation of symptoms (autonomic and neuroglycopenic), and onset of deterioration of cognitive function, we measured indexes of these responses during glycemic plateaus of 90, 78, 66, 54, and 42 mg/dl in 10 normal volunteers, with the use of the hyperinsulinemic glucose clamp technique. Activation of glucagon, epinephrine, norepinephrine, and growth hormone secretion began at arterialized venous plasma glucose concentrations of 68 +/- 1, 68 +/- 1, 65 +/- 1, and 67 +/- 2 (SE) mg/dl, respectively. Autonomic symptoms (anxiety, palpitations, sweating, irritability, and tremor) began at 58 +/- 2 mg/dl, which was significantly (P = 0.0001) lower. Neuroglycopenic symptoms (hunger, dizziness, tingling, blurred vision, difficulty thinking, and faintness) and deterioration in cognitive function tests began at 51 +/- 3 and 49 +/- 2 mg/dl, respectively, values that were both significantly (P = 0.018 and 0.004, respectively) lower than that for initiation of autonomic symptoms. We therefore conclude that there is a distinct hierarchy of responses to decrements in plasma glucose, such that the threshold for activation of counterregulatory hormone secretion occurs at higher plasma glucose levels than that for initiation of autonomic warning symptoms, which in turn occurs at higher plasma glucose levels than that for onset of neuroglycopenic symptoms and deterioration in cerebral function. Such a hierarchy would maximize the opportunity to avoid incapacitating hypoglycemia.
Habitual aerobic exercise is associated with enhanced endothelium-dependent dilatation (EDD) in older humans, possibly by increasing nitric oxide bioavailability and reducing oxidative stress. However, the mechanisms involved are incompletely understood. EDD was measured in young (6-8 months) and old (29-32 months) cage control and voluntary wheel running (VR) B6D2F1 mice. Age-related reductions in maximal carotid artery EDD to acetylcholine (74 vs. 96%, P < 0.01) and the nitric oxide (NO) component of EDD (maximum dilatation with ACh and l-NAME minus that with ACh alone was −28% vs. −55%, P < 0.01) were restored in old VR (EDD: 96%, NO: −46%). Nitrotyrosine, a marker of oxidative stress, was increased in aorta with age, but was markedly lower in old VR (P < 0.05). Aortic superoxide dismutase (SOD) activity was greater (P < 0.01), whereas NADPH oxidase protein expression (P < 0.01) and activity (P = 0.05) were lower in old VR vs. old cage control. Increasing SOD (with 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl) and inhibition of NADPH oxidase (with apocynin) improved EDD and its NO component in old cage control, but not old VR mice. VR increased endothelial NO synthase (eNOS) protein expression (P < 0.05) and activation (Ser1177 phosphorylation) (P < 0.05) in old mice. VR did not affect EDD in young mice. Our results show that voluntary aerobic exercise restores the age-associated loss of EDD by suppression of oxidative stress via stimulation of SOD antioxidant activity and inhibition of NADPH oxidase superoxide production. Increased eNOS protein and activation also may contribute to exercise-mediated preservation of NO bioavailability and EDD with ageing.
Non-technical summary Advancing age is a major risk factor for the development of cardiovascular disease. A key characteristic of older arteries that may lead to cardiovascular disease is reduced endothelial function, characterized by blunted endothelium-dependent dilatation. Sirtuins, specifically sirtuin-1, are proteins linked to increases in lifespan and lower incidence of age-related diseases. We hypothesized that diminished sirtuin-1 with advancing age may alter regulation of a key endothelium dilatory enzyme, nitric oxide synthase. Our findings provide novel translational evidence that sirtuin-1 expression and activity contribute to arterial endothelial dysfunction with ageing and that this may be due to altered nitric oxide synthase activation. Importantly, our results provide further compelling support for sirtuin-1 as a potential therapeutic target for lifestyle and pharmacological interventions aimed at the prevention and treatment of arterial ageing and age-associated cardiovascular diseases.Abstract We tested the hypothesis that reductions in the cellular deacetylase, sirtuin-1 (SIRT-1), contribute to vascular endothelial dysfunction with ageing via modulation of endothelial nitric oxide synthase (eNOS) acetylation/activation-associated nitric oxide (NO) production. In older (30 months, n = 14) vs. young (5-7 months, n = 16) B6D2F1 mice, aortic protein expression of SIRT-1 and eNOS phosphorylated at serine 1177 were lower (both P < 0.05), and acetylated eNOS was 6-fold higher (P < 0.05), whereas total eNOS did not differ (P = 0.65). Acetylcholine (ACh)-induced peak endothelium-dependent dilatation (EDD) was lower in isolated femoral arteries with ageing (P < 0.001). Incubation with sirtinol, a SIRT-1 inhibitor, reduced EDD in both young and older mice, abolishing age-related differences, whereas co-administration with L-NAME, an eNOS inhibitor, further reduced EDD similarly in both groups. Endothelium-independent dilatation to sodium nitroprusside (EID), was not altered by age or sirtinol treatment. In older (64 ± 1 years, n = 22) vs. young (25 ± 1 years, n = 16) healthy humans, ACh-induced forearm EDD was impaired (P = 0.01) and SIRT-1 protein expression was 37% lower in endothelial cells obtained from the brachial artery (P < 0.05), whereas EID did not differ. In the overall group, EDD was positively related to endothelial cell SIRT-1 protein expression (r = 0.44, P < 0.01). Reductions in SIRT-1 may play an important role in vascular endothelial dysfunction with ageing. SIRT-1 may be a key therapeutic target to treat arterial ageing.
We tested the hypothesis that carotid artery stiffening with ageing is associated with transforming growth factor-β1 (TGF-β1)-related increases in adventitial collagen and reductions in medial elastin, which would be reversed by voluntary aerobic exercise. Ex vivo carotid artery incremental stiffness was greater in old (29-32 months, n = 11) vs. young (4-7 months, n = 8) cage control B6D2F1 mice (8.84 ± 1.80 vs. 4.54 ± 1.18 AU, P < 0.05), and was associated with selective increases in collagen I and III and TGF-β1 protein expression in the adventitia (P < 0.05), related to an increase in smooth muscle α-actin (SMαA) (myofibroblast phenotype) (P < 0.05). In cultured adventitial fibroblasts, TGF-β1 induced increases in superoxide and collagen I protein (P < 0.05), which were inhibited by Tempol, a superoxide dismutase. Medial elastin was reduced with ageing, accompanied by decreases in the pro-synthetic elastin enzyme, lysyl oxidase, and increases in the elastin-degrading enzyme, matrix metalloproteinase 2. Fibronectin was unchanged with ageing, but there was a small increase in calcification (P < 0.05). Increased incremental stiffness in old mice was completely reversed (3.98 ± 0.34 AU, n = 5) by 10-14 weeks of modest voluntary wheel running (1.13 ± 0.29 km day −1 ), whereas greater voluntary wheel running (10.62 ± 0.49 km day −1 ) had no effect on young mice. The amelioration of carotid artery stiffness by wheel running in old mice was associated with reductions in collagen I and III and TGF-β1, partial reversal of the myofibroblast phenotype (reduced SMαA) and reduced calcification (all P < 0.05 vs. old controls), whereas elastin and its modulating enzymes were unaffected. Adventitial TGF-β1-related oxidative stress may play a key role in collagen deposition and large elastic artery stiffening with ageing and the efficacious effects of voluntary aerobic exercise.
We tested the hypothesis that regular aerobic exercise reverses arterial inflammation with aging. When compared with young controls (6.2 ± 0.4 mo; n = 7), old (31.3 ± 0.5 mo; n = 11) male B6D2F1 cage-restricted mice demonstrated increased arterial activation of the proinflammatory transcription factor NF-κB, as indicated by greater aortic phosphorylation of both the inhibitor of NF-κB kinase (IKK) and the p65 subunit of NF-κB (both P < 0.05). Similarly, aortic expression of the proinflammatory cytokines IL-1 and IL-6, IFN-γ, and TNF-α were greater in the old mice (all P < 0.05). Macrophage and T lymphocyte abundance was unchanged with age in the aortic intima and media but was markedly increased in the adventitia and perivascular fat tissue of old mice (all P < 0.05). This proinflammatory arterial phenotype with aging was associated with vascular dysfunction, as reflected by impaired nitric oxide-mediated endothelium-dependent dilation. Voluntary wheel running (10-14 wk) normalized aortic IKK-NF-κB activation, cytokine expression, adventitial and perivascular macrophage infiltration, and vascular function in old mice (32.4 ± 0.3 mo; n = 8) while having no consistent effects in young mice. Short-term voluntary wheel running started late in life reverses arterial inflammation with aging in mice possibly via outside-in actions. These anti-inflammatory effects may play an important role in the amelioration of age-associated vascular dysfunction by regular aerobic exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.