The bacterial superantigens are protein toxins that bind to major histocompatibility complex class II and T-cell receptor to stimulate large numbers of T cells. The majority are produced by the Gram-positive organisms Staphylococcus aureus and Streptococcus pyogenes and are the causative agents in toxic shock syndrome, an acute disease caused by the sudden and massive release of T-cell cytokines into the blood stream. The structure and function of the superantigens has revealed a common architecture that is also shared by another group of staphylococcal virulence factors called the superantigen-like proteins (SSL). Together, this family of structurally related molecules highlights how a common pathogenic organism has employed a simple but adaptable protein to generate an armamentarium of potent defense molecules designed to target of the innate and adaptive immune response.
Staphylococcal enterotoxins A-E (refs 1-3), toxic shock toxin (TST-1) (ref. 1), a product of Mycoplasma arthritidis and the Mls antigens provoke dramatic T-cell responses. All are extremely potent polyclonal mitogens stimulating a large proportion of both murine and human CD4+ and CD8+T cells although activity is tightly restricted by major histocompatibility complex (MHC) class II antigens. The murine T-cell response to staphylococcal enterotoxin B (SEB) has recently been shown to involve only those T cells expressing T-cell receptor V beta 3, 8.1, 8.2 and 8.3 domains, a situation which closely mimics the response to Mls antigens. This paper examines the initial events in SEA and SEB T-cell activation and shows that MHC restriction results from a direct high affinity binding by intact SEA and SEB to the same site on MHC class II HLA-DR antigens.
The staphylococcal superantigen-like proteins (SSLs) are close relatives of the superantigens but are coded for by a separate gene cluster within a 19-kb region of the pathogenicity island SaPIn2. rSSL7 (formally known as SET1) bound with high affinity (KD, 1.1 nM) to the monomeric form of human IgA1 and IgA2 plus serum IgA from primate, pig, rat, and horse. SSL7 also bound the secretory form of IgA found in milk from human, cow, and sheep, and inhibited IgA binding to cell surface FcαRI (CD89) and to a soluble form of the FcαRI protein. In addition to IgA, SSL7 bound complement factor C5 from human (KD, 18 nM), primate, sheep, pig, and rabbit serum, and inhibited complement-mediated hemolysis and serum killing of a Gram-negative organism Escherichia coli. SSL7 is a superantigen-like protein secreted from Staphylococcus aureus that blocks IgA-FcR interactions and inhibits complement, leading to increased survival of a sensitive bacterium in blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.