An inexpensive, field-portable sensor for direct, aggregate determination of aqueous petroleum hydrocarbons (PH) down to sub-ppm levels was developed. The basis of this sensor was an unusual, highly nongravimetric frequency response of 10 MHz (series fundamental) AT-cut quartz crystals when coated with rubbery silicone films. The response depended linearly and reliably on the total concentration of dissolved hydrocarbons over a range of 0.01-100 mg x L(-1) or up to aqueous solubility limits. Calibration sensitivities were measured individually for laboratory-prepared solutions of BTEX (benzene, toluene, ethylbenzene, and xylene isomers) and C6-C8 aliphatic components. Each component demonstrated a method detection limit (MDL) in the low-to sub-ppm range (benzene 10 mg x L(-1), n-hexane 0.54 mg x L(-1)) for light coatings of a commercially available poly-(dimethylsiloxane) gum (OV-1, > 10(6) g x mol(-1)) and lower MDLs for heavier coatings. Pairwise responses for the aliphatic and benzenoid standards were additive, indicating that aggregate determinations of mixtures (especially light fuels) were possible. Natural matrix interferences caused by sample turbidity and ionic strength were overcome by simple preparative methods. Fuel-spiked natural waters were determined with respect to standards and verified by gas chromatography. A 0.19 mg x L(-1) MDL for gasoline was obtained for heavy OV-1 films. Field determinations of groundwater surrounding a leaking underground fuel tank demonstrated that the sensor and method were useful for on-site PH screening. Large differences between the equilibration times of aliphatic and benzenoid components also indicated one avenue for BTEX speciation with the device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.