The phase structure function has been used as a convenient way to characterize aberrations introduced on optical propagation by the atmosphere. It forms the theoretical basis for the calculation of such things as the long- and short-exposure atmospheric transfer function. The structure function is difficult to measure directly and is usually assumed to follow Kolmogorov statistics. We present here a technique for direct measurement of the structure function through the use of a Shack-Hartmann wave-front sensor. Experiments confirm that the atmosphere behaves according to Kolmogorov theory most of the time. However, some instances of non-Kolmogorov behavior have been noted.
Multielement nematic liquid-crystal devices have been used by others and ourselves for closed-loop adaptive control of optical wave-front distortions. Until recently the phase retardance of available devices could be controlled rapidly in only one direction. The phase retardance of the dual-frequency device can be controlled rapidly in both directions. Understanding the dynamics of the phase retardance change is critical to the development of a high-speed control algorithm. We describe measurements and experiments leading to the closed-loop control of a multielement dual-frequency liquid-crystal adaptive optic.
We discuss the use of liquid-crystal phase modulators (LCPM's) both as a repeatable disturbance test source and as an adaptive optics corrector. LCPM's have the potential to induce controlled, repeatable, dynamic aberrations into optical systems at low cost, low complexity, and high flexibility. Because they are programmable and can be operated as transmissive elements, they can easily be inserted into the optical path of an adaptive optics system and used to generate a disturbance test source. When used as wave-front correctors they act as a piston-only segmented mirror and have a number of advantages. These include low operating power requirements, relatively low cost, and compact size. Laboratory experiments with a Meadowlark LCPM are presented. We first describe use of the LCPM as a repeatable disturbance generator for testing adaptive optics systems. We then describe a closed-loop adaptive optics system using the LCPM as the wave-front corrector. The adaptive optics system includes a Shack-Hartmann wave-front sensor operated with a zonal control algorithm.
We present here results using two novel adaptive optic elements, an electro-static membrane mirror, and a dual frequency nematic liquid crystal. These devices have the advantage of low cost, low power consumption, and compact size. Possible applications of the devices are astronomical adaptive optics, laser beam control, laser cavity mode control, and real time holography. Field experiments were performed on the Air Force Research Laboratory, Directed Energy Directorate's 3.67 meter AMOS telescope on Maui, Hawaii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.