The heart of forensic science is application of the scientific method and analytical approaches to answer questions central to solving a crime: Who, What, When, Where, and How. Forensic practitioners use fundamentals of chemistry and physics to examine evidence and infer its origin. In this regard, ecological researchers have had a significant impact on forensic science through the development and application of a specialized measurement technique-isotope analysis-for examining evidence. Here, we review the utility of isotope analysis in forensic settings from an ecological perspective, concentrating on work from the Americas completed within the last three decades. Our primary focus is on combining plant and animal physiological models with isotope analyses for source inference. Examples of the forensic application of isotopes-including stable isotopes, radiogenic isotopes, and radioisotopes-span from cotton used in counterfeit bills to anthrax shipped through the U.S. Postal Service and from beer adulterated with cheap adjuncts to human remains discovered in shallow graves. Recent methodological developments and the generation of isotope landscapes, or isoscapes, for data interpretation promise that isotope analysis will be a useful tool in ecological and forensic studies for decades to come.
Stable hydrogen and oxygen isotopic compositions (δ2H and δ18O, respectively) of animal tissues have been used to infer geographical origin or mobility based on the premise that the isotopic composition of tissue is systematically related to that of local water sources. Isotopic data for known‐origin samples are required to quantify these tissue–environment relationships. Although many of such data have been published and could be reused by researchers, differences in the standards used for calibration and analytical procedures for different datasets limit the comparability of these data.
We develop an algorithm that uses results from comparative analysis of secondary standards to transform data among reference scales and estimate the uncertainty inherent in these transformations. We apply the algorithm to a compilation of known‐origin keratin data published over the past ~20 years.
We show that transformation improves the comparability of data from different laboratories, and that the transformed data suggest ecophysiologically meaningful differences in keratin–water relationships among different animal groups and taxa.
The compiled data and algorithms are freely available in the ASSIGNR r‐package to support geographical provenance research, and more generally offer a methodology overcoming several challenges in geochemical data integration and reuse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.