The central goal of the National Ignition Facility (NIF) is demonstration of controlled thermonuclear ignition. The mainline ignition target is a low-Z, single-shell cryogenic capsule designed to have weakly nonlinear Rayleigh-Taylor growth of surface perturbations. Doubleshell targets are an alternative design concept that avoids the complexity of cryogenic preparation but has greater physics uncertainties associated with performance-degrading mix. A typical double-shell design involves a high-Z inner capsule filled with DT gas and supported within a low-Z ablator shell. The largest source of uncertainty for this target is the degree of highly evolved nonlinear mix on the inner surface of the high-Z shell. High Atwood numbers and feed-through of strong outer surface perturbation growth to the inner surface promote high levels of instability. The main challenge of the double-shell target designs is controlling the resulting nonlinear mix to levels that allow ignition to occur.Design and analysis of a suite of indirect-drive NIF double-shell targets with hohlraum temperatures of 200 eV and 250 eV are presented. Analysis of these targets includes assessment of two-dimensional radiation asymmetry as well as nonlinear mix. Twodimensional integrated hohlraum simulations indicate that the x-ray illumination can be adjusted to provide adequate symmetry control in hohlraums specially designed to have high laser-coupling efficiency [Suter et al., Phys. Plasmas 5, 2092(2000l. These simulations also reveal the need to diagnose and control localized 10-15 keV x-ray emission from the high-Z hohlraum wall because of strong absorption by the high-Z inner shell. Preliminary estimates of the degree of laser backscatter from an assortment of laser-plasma interactions suggest comparatively benign hohlraum conditions. Application of a variety of nonlinear mix models and phenomenological tools, including buoyancy-drag models, multimode simulations and fallline optimization, indicates a possibility of achieving ignition, i.e., fusion yields greater than 1 MJ. Planned experiments on the Omega laser to test current understanding of high-energy radiation flux asymmetry and mix-induced yield degradation in double-shell targets are described.
The correct treatment of diffusion in multicomponent gas mixtures requires solution of a linear system of equations for the diffusive mass fluxes relative to the mass-averaged velocity of the mixture. Effective binary diffusion approximations are often used to avoid solving this system. These approximations are generally internally inconsistent in the sense that the approximate diffusion fluxes do not properly sum to zero. The origin of this inconsistency is identified, and a general procedure for removing it is presented. This procedure applies equally to concentration, forced, pressure, and thermal diffusion, either separately or in combination. It is used to obtain a self-consistent effective binary diffusion approximation in which the diffusive mass fluxes properly sum to zero and all four types of diffusion are simultaneously accounted for. Multicomponent diffusion in gasesMulticomponent diffusion in gases is governed by the equations [1] Z(WAE/)(«j-«0 = ei (/ = !,-~,JV),(1) j where N is the number of species or components in the mixture, n £ is the specific velocity of species ι, x t is the mole fraction of species i, D tj is the binary diffusivity for the pair (r,y), and the driving forces G t are given by (2) *
A phenomenological theory is developed for multicomponent diffusion, including thermal diffusion, in gas mixtures in which the components may have different temperatures. The theory is based on the hydrodynamic approach of Maxwell and Stefan, as extended and elaborated by Furry [1] and Williams [2]. The present development further extends these earlier treatments to multiple temperatures and multicomponent thermal diffusion. The resulting diffusion fluxes obey generalized Stefan-Maxwell relations which include the effects of ordinary, forced, pressure, and thermal diffusion. When thermal diffusion is neglected, these relations have the same form as the usual single-temperature ones, except that mole fractions are replaced by pressure fractions (i.e., ratios of partial pressures to total pressure). The binary ap.d thermal diffusion coefficients are given in terms of collision integrals. Single-temperature systems and binary systems are treated as special cases of the general theory. A self-consistent effective binary diffusion approximation for multitemperature systems is presented.
The occurrence and significance of complex characteristics in two-phase flow equation svstems (!re clarified :bv a detailed analysis of separated two-phase flow between .two parallel plates. The basic .system of one-dimensional, two-phase flow equations for this problem possesses complex characteristics, exhibits unbounded instabilities in the short-wavelength limit, and constitutes an improperly posed initial value problem. These difficulties have led some workers to propose major modifications to the basic equation system. The relatively minor modification of introducing surface tension is shown to be sufficient to render the characteristics real, to stabilize short-wavelength disturbances, and to produce a properly posed problem. For a given value of the surface tension, the basic equation system thus modified is shown to predict correctly the evolution of small-amplitude disturbances having wavelengths long compared to the plate spacing. A formula is given for the artificial surface tension necessary to stabilize wavelengths of the. order of the mesh spacing in: a finite-difference numerical calculation. A brief discussion is given concerning the expected behavior of surface tension as compared to viscosity in the nonlinear regime. The general relationship between characteristics and stability is discussed in Appendix A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.