With the increase in genomewide experiments and the sequencing of multiple genomes, the analysis of large data sets has become commonplace in biology. It is often the case that thousands of features in a genomewide data set are tested against some null hypothesis, where a number of features are expected to be significant. Here we propose an approach to measuring statistical significance in these genomewide studies based on the concept of the false discovery rate. This approach offers a sensible balance between the number of true and false positives that is automatically calibrated and easily interpreted. In doing so, a measure of statistical significance called the q value is associated with each tested feature. The q value is similar to the well known p value, except it is a measure of significance in terms of the false discovery rate rather than the false positive rate. Our approach avoids a flood of false positive results, while offering a more liberal criterion than what has been used in genome scans for linkage.false discovery rates ͉ genomics ͉ multiple hypothesis testing ͉ q values
Summary. Multiple-hypothesis testing involves guarding against much more complicated errors than single-hypothesis testing. Whereas we typically control the type I error rate for a single-hypothesis test, a compound error rate is controlled for multiple-hypothesis tests. For example, controlling the false discovery rate FDR traditionally involves intricate sequential p-value rejection methods based on the observed data. Whereas a sequential p-value method fixes the error rate and estimates its corresponding rejection region, we propose the opposite approach-we fix the rejection region and then estimate its corresponding error rate. This new approach offers increased applicability, accuracy and power. We apply the methodology to both the positive false discovery rate pFDR and FDR, and provide evidence for its benefits. It is shown that pFDR is probably the quantity of interest over FDR. Also discussed is the calculation of the q-value, the pFDR analogue of the p-value, which eliminates the need to set the error rate beforehand as is traditionally done. Some simple numerical examples are presented that show that this new approach can yield an increase of over eight times in power compared with the Benjamini-Hochberg FDR method.
Heterogeneity and latent variables are now widely recognized as major sources of bias and variability in high-throughput experiments. The most well-known source of latent variation in genomic experiments are batch effects-when samples are processed on different days, in different groups or by different people. However, there are also a large number of other variables that may have a major impact on high-throughput measurements. Here we describe the sva package for identifying, estimating and removing unwanted sources of variation in high-throughput experiments. The sva package supports surrogate variable estimation with the sva function, direct adjustment for known batch effects with the ComBat function and adjustment for batch and latent variables in prediction problems with the fsva function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.