Yellowstone Lake is central to the balanced functioning of the Yellowstone ecosystem, yet little is known about the microbial component of its food chain. A remotely operated vehicle provided video documentation (http://www.tbi.montana.edu/media/videos/) and allowed sampling of dilute surface zone waters and enriched lake floor hydrothermal vent fluids. Vent emissions contained substantial H(2)S, CH(4), CO(2) and H(2), although CH(4) and H(2) levels were also significant throughout the lake. Pyrosequencing and near full-length sequencing of Bacteria 16S rRNA gene diversity associated with two vents and two surface water environments demonstrated that this lake contains significant bacterial diversity. Biomass was size-fractionated by sequentially filtering through 20-µm-, 3.0-µm-, 0.8-µm- and 0.1-µm-pore-size filters, with the >0.1 to <0.8 µm size class being the focus of this study. Major phyla included Acidobacteria, Actinobacteria, Bacteroidetes, α- and β-Proteobacteria and Cyanobacteria, with 21 other phyla represented at varying levels. Surface waters were dominated by two phylotypes: the Actinobacteria freshwater acI group and an α-Proteobacteria clade tightly linked with freshwater SAR11-like organisms. We also obtained evidence of novel thermophiles and recovered Prochlorococcus phylotypes (97-100% identity) in one near surface photic zone region of the lake. The combined geochemical and microbial analyses suggest that the foundation of this lake's food chain is not simple. Phototrophy presumably is an important driver of primary productivity in photic zone waters; however, chemosynthetic hydrogenotrophy and methanotrophy are likely important components of the lake's food chain.
The Yellowstone geothermal complex has yielded foundational discoveries that have significantly enhanced our understanding of the Archaea. This study continues on this theme, examining Yellowstone Lake and its lake floor hydrothermal vents. Significant Archaea novelty and diversity were found associated with two near-surface photic zone environments and two vents that varied in their depth, temperature and geochemical profile. Phylogenetic diversity was assessed using 454-FLX sequencing (B51 000 pyrosequencing reads; V1 and V2 regions) and Sanger sequencing of 200 near-full-length polymerase chain reaction (PCR) clones. Automated classifiers (Ribosomal Database Project (RDP) and Greengenes) were problematic for the 454-FLX reads (wrong domain or phylum), although BLAST analysis of the 454-FLX reads against the phylogenetically placed fulllength Sanger sequenced PCR clones proved reliable. Most of the archaeal diversity was associated with vents, and as expected there were differences between the vents and the near-surface photic zone samples. Thaumarchaeota dominated all samples: vent-associated organisms corresponded to the largely uncharacterized Marine Group I, and in surface waters, B69-84% of the 454-FLX reads matched archaeal clones representing organisms that are Nitrosopumilus maritimus-like (96-97% identity). Importance of the lake nitrogen cycling was also suggested by 45% of the alkaline vent phylotypes being closely related to the nitrifier Candidatus Nitrosocaldus yellowstonii. The Euryarchaeota were primarily related to the uncharacterized environmental clones that make up the Deep Sea Euryarchaeal Group or Deep Sea Hydrothermal Vent Group-6. The phylogenetic parallels of Yellowstone Lake archaea to marine microorganisms provide opportunities to examine interesting evolutionary tracks between freshwater and marine lineages.
Considerable Nanoarchaeota novelty and diversity were encountered in Yellowstone Lake, Yellowstone National Park (YNP), where sampling targeted lake floor hydrothermal vent fluids, streamers and sediments associated with these vents, and in planktonic photic zones in three different regions of the lake. Significant homonucleotide repeats (HR) were observed in pyrosequence reads and in near full-length Sanger sequences, averaging 112 HR per 1349 bp clone and could confound diversity estimates derived from pyrosequencing, resulting in false nucleotide insertions or deletions (indels). However, Sanger sequencing of two different sets of PCR clones (110 bp, 1349 bp) demonstrated that at least some of these indels are real. The majority of the Nanoarchaeota PCR amplicons were vent associated; however, curiously, one relatively small Nanoarchaeota OTU (71 pyrosequencing reads) was only found in photic zone water samples obtained from a region of the lake furthest removed from the hydrothermal regions of the lake. Extensive pyrosequencing failed to demonstrate the presence of an Ignicoccus lineage in this lake, suggesting the Nanoarchaeota in this environment are associated with novel Archaea hosts. Defined phylogroups based on near full-length PCR clones document the significant Nanoarchaeota 16S rRNA gene diversity in this lake and firmly establish a terrestrial clade distinct from the marine Nanoarcheota as well as from other geographical locations.
Hundreds of active and dormant geothermal vents have been located on the floor of Yellowstone Lake, although characterization of the associated biology (macro or micro) has been extremely limited. Herein, we describe an aquatic moss (Fontinalis) colony closely associated with vent emissions that considerably exceeded known temperature maxima for this plant. Vent waters were supersaturated with CO(2), likely accommodating a CO(2) compensation point that would be expected to be quite elevated under these conditions. The moss was colonized by metazoa, including the crustaceans Hyalella and Gammarus, a segmented worm in the Lumbriculidae family, and a flatworm specimen tentatively identified as Polycelis. The presence of these invertebrates suggest a highly localized food chain that derives from the presence of geothermal inputs and thus is analogous to the deep marine vents that support significant biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.