It is customary to manage POF by aggressive excisional biopsy. Several different surgical approaches may potentially be used to repair the resultant gingival defect and minimize patient esthetic concerns.
PICF content can be studied as early as 1 week following one-stage implant placement. The results raise doubts regarding the clinical usefulness of amoxicillin prophylaxis.
Peri-implant diseases (peri-implantitis and peri-implant mucositis) are bacterially driven infections. Peri-implantitis leads to aggressive bone resorption and eventual loss of the implant. Traditionally, peri-implantitis was regarded as microbially similar to periodontitis, and translocation of periodontal pathogens into the peri-implant crevice was considered as a critical factor in disease causation. However, evidence is emerging to suggest that the peri-implant and periodontal ecosystems differ in many important ways. The purpose of this review is to examine the evidence supporting microbial congruence and discordance in these two communities. Current evidence suggests that osseointegrated implants truly create unique microenvironments that force microbial adaptation and selection. Further studies that revisit the "microbial reservoir" hypothesis and identify species that play an etiologic role in peri-implant disease and examine their transmission from teeth are needed.
Clarithromycin can attain higher levels in gingiva than serum and reach higher levels in inflamed gingiva than in healthy gingiva. Its distribution profile seems to be suitable for the treatment of periodontitis. The reduction in crevicular fluid flow at control sites suggested that clarithromycin may produce anti-inflammatory effects.
Niobium oxide has been shown to improve biocompatibility and promote bioactivity. The purpose of this study was to evaluate the effect of niobium oxide additions on the microstructure and thermal properties of fluorapatite glass-ceramics for biomedical applications. Four glass-ceramic compositions with increasing amounts of niobium oxide from 0 to 5 wt % were prepared. The glass compositions were melted at 1,525 degrees C for 3 h, quenched, ground, melted again at 1,525 degrees C for 3 h and furnace cooled. The coefficient of thermal expansion was measured by dilatometry. The crystallization behavior was evaluated by differential thermal analysis. The nature of the crystalline phases was investigated by X-ray diffraction. The microstructure was studied by SEM. In addition, the cytotoxicity of the ceramics was evaluated according to the ASTM standard F895--84. The results from X-ray diffraction analyses showed that fluorapatite was the major crystalline phase in all glass-ceramics. Differential thermal analyses revealed that fluorapatite crystallization occurred between 800 and 934 degrees C depending on the composition. The coefficient of thermal expansion varied from 7.6 to 9.4 x 10(-6)/ degrees C. The microstructure after heat treatment at 975 degrees C for 30 min consisted of submicroscopic fluorapatite crystals (200--300 nm) for all niobium-containing glass-ceramics, whereas the niobium-free glass-ceramic contained needle-shaped fluorapatite crystals, 2 microm in length. None of the glass-ceramics tested exhibited any cytotoxic activity as tested by ASTM standard F895--84.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.