The different roles the attractive and repulsive forces play in forming the equilibrium structure of a Lennard-Jones liquid are discussed. It is found that the effects of these forces are most easily separated by considering the structure factor (or equivalently, the Fourier transform of the pair-correlation function) rather than the pair-correlation function itself. At intermediate and large wave vectors, the repulsive forces dominate the quantitative behavior of the liquid structure factor. The attractions are manifested primarily in the small wave vector part of the structure factor; but this effect decreases as the density increases and is almost negligible at reduced densities higher than 0.65. These conclusions are established by considering the structure factor of a hypothetical reference system in which the intermolecular forces are entirely repulsive and identical to the repulsive forces in a Lennard-Jones fluid. This reference system structure factor is calculated with the aid of a simple but accurate approximation described herein. The conclusions lead to a very simple prescription for calculating the radial distribution function of dense liquids which is more accurate than that obtained by any previously reported theory. The thermodynamic ramifications of the conclusions are presented in the form of calculations of the free energy, the internal energy (from the energy equation), and the pressure (from the virial equation). The implications of our conclusions to perturbation theories for liquids and to the interpretation of x-ray scattering experiments are discussed.
We develop a unified and generally applicable theory of solvation of small and large apolar species in water. In the former, hydrogen bonding of water is hindered yet persists near the solutes. In the latter, hydrogen bonding is depleted, leading to drying of extended apolar surfaces, large forces of attraction, and hysteresis on mesoscopic length scales. The crossover occurs on nanometer length scales, when the local concentration of apolar units is sufficiently high, or when an apolar surface is sufficiently large. Our theory for the crossover has implications concerning the stability of protein assemblies and protein folding.
Hydrophobicity manifests itself differently on large and small length scales. This review focuses on large length scale hydrophobicity, particularly on dewetting at single hydrophobic surfaces and drying in regions bounded on two or more sides by hydrophobic surfaces. We review applicable theories, simulations and experiments pertaining to large scale hydrophobicity in physical and biomoleclar systems and clarify some of the critical issues pertaining to this subject. Given space constraints, we could not review all of the significant and interesting work in this very active field.
The van der Waals picture focuses on the differing roles of the strong short-ranged repulsive intermolecular forces and the longer ranged attractions in determining the structure and dynamics of dense fluids and solids. According to this physical picture, the attractive interactions help fix the volume of the system, but the arrangements and motions of molecules within that volume are determined primarily by the local packing and steric effects produced by the repulsive forces. This very useful approach, its limitations, and its successful application to a wide variety of static and dynamic phenomena in condensed matter systems are reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.