The deep magmatic architecture of the Hawaiian volcanic system is central to understanding the transport of magma from the upper mantle to the individual volcanoes. We leverage advances in earthquake monitoring with deep learning algorithms to image the structures underlying a major mantle earthquake swarm of nearly 200,000 events that rapidly accelerated following the 2018 Kīlauea caldera collapse. At depths of 36-43 km, we resolve a 15 km long collection of near-horizontal sheeted structures that we identify as a sill complex. These sills connect to the lower depths of Kīlauea’s plumbing by a 25 km-long belt of seismicity. Additionally, a column of seismicity links the sill complex to a shallow decollement near Mauna Loa. These findings implicate the mantle sill complex as a nexus for magma transport beneath Hawai‘i and furthermore indicate widespread magmatic connectivity in the volcanic system.
The 2020–2023 southwestern Puerto Rico seismic sequence, still ongoing in 2023, is remarkable for its multiple-fault rupture complexity and elevated aftershock productivity. We applied an automatic workflow to continuous data from 43 seismic stations in Puerto Rico to build an enhanced earthquake catalog with ∼180,000 events for the 3+ yr sequence from 28 December 2019 to 1 January 2023. This workflow contained the EQTransformer (EQT) deep learning model for event detection and phase picking, the EikoNet-Hypocenter Inversion with Stein Variational Inference probabilistic earthquake location approach with a neural network trained to solve the eikonal wave equation, and relocation with event-pair waveform cross correlation. EQT increased the number of catalog events in the sequence by about seven times, though its performance was not quite as good as thorough analyst review. The enhanced catalog revealed new structural details of the sequence space–time evolution, including sudden changes in activity, on a complex system of many small normal and strike-slip faults. This sequence started on 28 December 2019 with an M 4.7 strike-slip earthquake followed by 10 days of shallow strike-slip foreshocks, including several M 5+ earthquakes, in a compact region. The oblique normal fault Mw 6.4 mainshock then happened on 7 January 2020. Early aftershocks in January 2020, with several M 5+ earthquakes, quickly expanded into two intersecting fault zones with diffuse seismicity: one extending ∼35 km on a northward-dipping normal fault and the other ∼60-km-long and oriented west-northwest–east-southeast on strike-slip faults. Months to years later, aftershocks moved westward, deeper, and to outer reaches of the active fault zones, with abrupt rapid seismicity migration following larger M 4.7+ aftershocks in May, July, and December 2020. The observed seismicity evolution indicates cascading failure from stress transfer on multiple critically stressed faults. High aftershock productivity results from the complex multiple-fault network hosting the sequence, which is characteristic of an immature fault system in the diffuse deformation zone around Puerto Rico, at the complicated North American–Caribbean plate boundary region.
Coseismic rotations of principal stress axes can provide insights into the strength of the crust, but it is unclear how common this phenomenon is. We use a nearest‐neighbor clustering algorithm to identify earthquake sequences in the global ISC‐GEM catalog and the regional Southern California catalog. Using an inner‐product‐based pairwise measure of moment tensor similarity, we demonstrate that, in both catalogs, aftershocks are less similar to their respective mainshocks than foreshocks are. We interpret this effect, which we call moment tensor scattering, as evidence for widespread coseismic stress rotations. Moment tensor scattering is observable for a broad range of mainshock magnitudes in both catalogs. We further demonstrate that mainshock‐aftershock similarity recovers logarithmically to pre‐mainshock levels on decadal timescales. We conclude that moment tensor scattering is a generally observable feature of seismic sequences which may be useful in future work to discriminate between models of crustal strength.
We examine the similarity of foreshock and aftershock moment tensors relative to mainshocks• Moment tensors of aftershocks more scattered than those of foreshocks at global and local scales• Mainshock-aftershock similarity gradually increases in the years following a mainshock
Balloon-based seismology through the study of low-frequency seismo-acoustic signals (infrasound) has gained acceptance as a viable way to study seismic activity on Venus. Balloon-based barometers have the potential to detect and characterize atmospheric waves launched by venusquakes and volcanic eruptions while offering substantially longer instrument lifetimes in the Venus middle atmosphere, where temperature and pressure are significantly more benign (0–100°C, ∼1 atm) as compared to the surface (>460 °C, ∼90 atm). One of the major challenges in performing balloon-based seismology on Venus is the absence of ground-truth data for event identification and discrimination. To address this challenge, our activities are aimed at building a catalog of terrestrial balloon-recorded infrasound signals of geophysical provenance, using which signal predictions can be extended to Venus and the detectability of events can be analyzed. We will highlight our recently concluded Balloon-based Acoustic Seismology Study (BASS) flight campaign, which served as Earth-analog experiments for Venus balloon-based seismology. Data collected were used to validate seismo-acoustic simulation tools, which are being expanded to include the Venus atmosphere. These tools will used to generate predictions of infrasound signals from geophysical events on Venus. We will also provide perspective on directions for future instrument development for Venus balloon flights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.