The characterization of organic mixtures by comprehensive two-dimensional gas chromatography (GC×GC) coupled to electron impact (EI) ionization time-of-flight mass spectrometry (TOF-MS) allows the detection of thousands of compounds. However, owing to the exhaustive fragmentation following EI ionization, despite the use of mass spectral libraries, a majority of the compounds remains unidentified because of the lack of parent ion preservation. Thus, soft-ionization energies leading to organic compounds being ionized with limited or no fragmentation, retaining the molecular ion, has been of interest for many years. In this study, photoionization (PI) was evaluated as the ion source for GC×GC-TOF-MS measurements. First, capabilities and limitations of PI were tested using an authentic mixture of compounds of several chemical classes. Ionization energy exhibited by PI, equivalent to 10.8 eV, resulted in significant retention of molecular ion information; [M] for alkanes, ketones, FAMEs, aromatics, [M-H] for chloroalkanes, and [M-HO] for alcohols. Second, considering the potential of PI for hydrocarbons, base oils, complex mixtures of saturated and unsaturated hydrocarbons blended for finished lubricant formulations, were extensively evaluated. Several chemical classes of hydrocarbons were positively identified including a large number of isomeric compounds, both aliphatics and cyclics. Interestingly, branched-alkanes were ionized with lower excess internal energy, not only retaining the molecular ions but also exhibiting unique fragmentation patterns. The results presented herein offer a unique perspective into the detailed molecular characterization of base oils. Such unprecedented identification power of PI coupled with GC×GC-TOF-MS is the first report covering volatiles to low-volatile organic mixtures.
Comprehensive two‐dimensional gas chromatography (GC × GC) coupled to time‐of‐flight mass spectrometry is a powerful separation tool for complex petroleum product analysis. However, the most commonly used electron ionization (EI) technique often makes the identification of the majority of hydrocarbons impossible due to the exhaustive fragmentation and lack of molecular ion preservation, prompting the need of soft‐ionization energies. In this study, three different soft‐ionization techniques including photo ionization (PI), chemical ionization (CI), and field ionization (FI) were compared against EI to elucidate their relative capabilities to reveal different base oil hydrocarbon classes. Compared with EI (70 eV), PI (10.8 eV) retained significant molecular ion (M+·) information for a large number of isomeric species including branched‐alkanes and saturated monocyclic hydrocarbons along with unique fragmentation patterns. However, for bicyclic/polycyclic naphthenic and aromatic compounds, EI played upper hand by retaining molecular as well as fragment ions to identify the species, whereas PI exhibited mainly molecular ion signals. On the other hand, CI revealed selectivity towards different base oil groups, particularly for steranes, sulfur‐containing thiophenes, and esters, yielding protonated molecular ions (M + H)+ for unsaturated and hydride abstracted ions (M‐H+) for saturated hydrocarbons. FI, as expected, generated intact molecular ions (M+·) irrespective to the base oil chemical classes. It allowed elemental composition by TOFMS with a mass resolving power up to 8000 (FWHM) and a mass accuracy of 1 mDa, leading to the calculation of heteroatomic content, double bond equivalency, and carbon number of the compounds. The qualitative and quantitative results presented herein offer a unique perspective into the detailed comparison of different ionization techniques corresponding to several hydrocarbon classes.
By using the acidity of MALDI matrix at high temperature, sequencing ladders of miRNA were generated. The accurate monoisotopic mass of each RNA fragment was measured by MALDI SpiralTOF. Analysis of nucleotide identity and complementary sequencing ladders allowed 100% sequence coverage and accuracy to be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.