Complement plays an important role in the immunotherapeutic action of the anti-CD20 mAb rituximab, and therefore we investigated whether complement might be the limiting factor in rituximab therapy. Our in vitro studies indicate that at high cell densities, binding of rituximab to human CD20+ cells leads to loss of complement activity and consumption of component C2. Infusion of rituximab in chronic lymphocytic leukemia patients also depletes complement; sera of treated patients have reduced capacity to C3b opsonize and kill CD20+ cells unless supplemented with normal serum or component C2. Initiation of rituximab infusion in chronic lymphocytic leukemia patients leads to rapid clearance of CD20+ cells. However, substantial numbers of B cells, with significantly reduced levels of CD20, return to the bloodstream immediately after rituximab infusion. In addition, a mAb specific for the Fc region of rituximab does not bind to these recirculating cells, suggesting that the rituximab-opsonized cells were temporarily sequestered by the mononuclear phagocytic system, and then released back into the circulation after the rituximab-CD20 complexes were removed by phagocytic cells. Western blots provide additional evidence for this escape mechanism that appears to occur as a consequence of CD20 loss. Treatment paradigms to prevent this escape, such as use of engineered or alternative anti-CD20 mAbs, may allow for more effective immunotherapy of chronic lymphocytic leukemia.
Treatment of chronic lymphocytic leukemia (CLL) patients with standard dose infusion of rituximab (RTX), 375 mg/m2, induces clearance of malignant cells from peripheral blood after infusion of 30 mg of RTX. After completion of the full RTX infusion, substantial recrudescence of CLL cells occurs, and these cells have lost >90% of CD20. To gain insight into mechanism(s) of CD20 loss, we investigated the hypothesis that thrice-weekly low-dose RTX (20 or 60 mg/m2) treatment for CLL over 4 wk would preserve CD20 and enhance leukemic cell clearance. During initial infusions in all 12 patients, the first 30 mg of RTX promoted clearance of >75% leukemic cells. Four of six patients receiving 20 mg/m2 RTX retained ≥50% CD20, and additional RTX infusions promoted further cell clearance. However, four of six patients receiving 60 mg/m2 had CD20 levels <20% baseline 2 days after initial infusions, and additional RTX infusions were less effective, presumably due to epitope loss. Our results suggest that when a threshold RTX dose is exceeded, recrudesced RTX-opsonized cells are not cleared, due to saturation of the mononuclear phagocytic system, but instead are shaved of RTX-CD20 complexes by acceptor cells. Thrice-weekly low-dose RTX may promote enhanced clearance of circulating CLL cells by preserving CD20.
Perifosine-bortezomib ± dexamethasone demonstrated encouraging activity in heavily pretreated bortezomib-exposed patients with advanced MM. A phase III trial is underway comparing perifosine-bortezomib plus dexamethasone with bortezomib-dexamethasone in patients with relapsed/refractory MM previously treated with bortezomib.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.