Genome-wide association studies (GWAS) have identified >100 loci of chronic kidney disease-defining traits (CKD-dt). Molecular mechanisms underlying these associations remain elusive. Using 280 kidney transcriptomes and 9958 gene expression profiles from 44 non-renal tissues we uncover gene expression partners (eGenes) for 88.9% of CKD-dt GWAS loci. Through epigenomic chromatin segmentation analysis and variant effect prediction we annotate functional consequences to 74% of these loci. Our colocalisation analysis and Mendelian randomisation in >130,000 subjects demonstrate causal effects of three eGenes (NAT8B, CASP9 and MUC1) on estimated glomerular filtration rate. We identify a common alternative splice variant in MUC1 (a gene responsible for rare Mendelian form of kidney disease) and observe increased renal expression of a specific MUC1 mRNA isoform as a plausible molecular mechanism of the GWAS association signal. These data highlight the variants and genes underpinning the associations uncovered in GWAS of CKD-dt.
MicroRNA-181a binds to the 3' untranslated region of messenger RNA (mRNA) for renin, a rate-limiting enzyme of the renin-angiotensin system. Our objective was to determine whether this molecular interaction translates into a clinically meaningful effect on blood pressure and whether circulating miR-181a is a measurable proxy of blood pressure. In 200 human kidneys from the TRANScriptome of renaL humAn TissuE (TRANSLATE) study, renal miR-181a was the sole negative predictor of renin mRNA and a strong correlate of circulating miR-181a. Elevated miR-181a levels correlated positively with systolic and diastolic blood pressure in TRANSLATE, and this association was independent of circulating renin. The association between serum miR-181a and systolic blood pressure was replicated in 199 subjects from the Genetic Regulation of Arterial Pressure of Humans In the Community (GRAPHIC) study. Renal immunohistochemistry and in situ hybridization showed that colocalization of miR-181a and renin was most prominent in collecting ducts where renin is not released into the systemic circulation. Analysis of 69 human kidneys characterized by RNA sequencing revealed that miR-181a was associated with downregulation of four mitochondrial pathways and upregulation of 41 signaling cascades of adaptive immunity and inflammation. We conclude that renal miR-181a has pleiotropic effects on pathways relevant to blood pressure regulation and that circulating levels of miR-181a are both a measurable proxy of renal miR-181a expression and a novel biochemical correlate of blood pressure. Online address: http://www.molmed.org doi: 10.2119/molmed.2015.00096 Address correspondence to Maciej Tomaszewski, Institute of CardiovascularSciences, AV Hill Building, Dover Street, Manchester, M13 9PT, United Kingdom. Phone: +44-(0)116-275-0232; E-mail: maciej.tomaszewski@manchester.ac.uk. Submitted April 29, 2015; Accepted for publication August 17, 2015; Published Online (www.molmed.org ) August 24, 2015 m i R -1 8 1 a , T H E K I D N E Y A N D B L O O D P R E S S U R E7 4 0 | M a r q u E s E T a L . | M O L M E D 2 1 : 7 3 9 -7 4 8 , 2 0 1 5
BackgroundMany kidneys are rejected for transplantation due to inadequate in situ perfusion during organ retrieval because of the risk of additional ischaemic injury and microvasculature thrombosis. This study describes the use of ex vivo normothermic perfusion (EVNP) for the resuscitation and assessment of human kidneys that were discarded after inadequate in situ perfusion.MethodsTwenty-two human kidneys were retrieved but then deemed unsuitable for transplantation, primarily due to inadequate in situ perfusion. After a period of static cold storage, kidneys were perfused for 60 min with an oxygenated red cell based solution at 36 °C.ResultsNineteen out of 22 kidneys (86 %) were from DCD donors. During EVNP, kidneys were assessed and scored based on their macroscopic appearance, measures of renal blood flow and urine production. Kidneys were scored from 1 indicating the least injury to 5, indicating the worst. Twelve kidneys had an EVNP score of 1–2, 7 scored 3–4 and 3 kidneys scored 5. The EVNP score 5 kidneys had a low level of tubular function compared to the score 1–4 kidneys. Their perfusion parameters did not improve during EVNP and they were considered non-transplantable. There was no association between the histological evaluation and EVNP parameters.ConclusionEVNP restores function ex vivo and enables an assessment of kidneys that have been declined for transplantation due to inadequate in situ perfusion.
Nephrons scar and involute during aging, increasing the risk of chronic kidney disease. Little is known, however, about genetic mechanisms of kidney aging. We sought to define the signatures of age on the renal transcriptome using 563 human kidneys. The initial discovery analysis of 260 kidney transcriptomes from the TRANScriptome of renaL humAn TissuE Study (TRANSLATE) and the Cancer Genome Atlas identified 37 age-associated genes. For 19 of those genes, the association with age was replicated in 303 kidney transcriptomes from the Nephroseq resource. Surveying 42 nonrenal tissues from the Genotype–Tissue Expression project revealed that, for approximately a fifth of the replicated genes, the association with age was kidney-specific. Seventy-three percent of the replicated genes were associated with functional or histological parameters of age-related decline in kidney health, including glomerular filtration rate, glomerulosclerosis, interstitial fibrosis, tubular atrophy, and arterial narrowing. Common genetic variants in four of the age-related genes, namely LYG1 , PPP1R3C , LTF and TSPYL5 , correlated with the trajectory of age-related changes in their renal expression. Integrative analysis of genomic, epigenomic, and transcriptomic information revealed that the observed age-related decline in renal TSPYL5 expression was determined both genetically and epigenetically. Thus, this study revealed robust molecular signatures of the aging kidney and new regulatory mechanisms of age-related change in the kidney transcriptome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.