Indium selenides have attracted extensive attention in high-efficiency thermoelectrics for waste heat energy conversion due to their extraordinary and tunable electrical and thermal properties. This Review aims to provide a thorough summary of the structural characteristics (e.g. crystal structures, phase transformations, and structural vacancies) and synthetic methods (e.g. bulk materials, thin films, and nanostructures) of various indium selenides, and then summarize the recent progress on exploring indium selenides as high-efficiency thermoelectric materials. By highlighting challenges and opportunities in the end, this Review intends to shine some light on the possible approaches for thermoelectric performance enhancement of indium selenides, which should open up an opportunity for applying indium selenides in the next-generation thermoelectric devices.
Studies of electron energy loss spectroscopy and selected area electron diffraction ͑SAED͒ were systematically performed on 15 and 25 at. % lanthanide ͑Ln͒-doped ceria samples ͑Ln= Sm, Gd, Dy, and Yb͒, through which the local ordering of oxygen vacancies that develops with increase in doping level was confirmed in the sequence of ͑Gd, Sm͒ Ͼ DyϾ Yb. Furthermore, a monotone correlation between the development of the ordering and the degradation of ionic conductivity with increasing the doping concentration from 15 to 25 at. % was observed. Based on the analysis of SAED patterns, a structural model for the ordering of oxygen vacancies has been constructed, in which the arrangement of oxygen vacancies is similar to that in C-type Ln 2 O 3 oxides and the 1 2 ͗110͘ pairs of the vacancies are preferred. Then, the factors that can influence the formation of the ordering are discussed.
25 at. % Rare-earth (RE)-doped ceria samples (RE=Sm, Dy, Y, and Yb) were examined using transmission electron microscopy and electron energy loss spectroscopy, from which the oxygen vacancy ordering in nanosized domains was confirmed. The relationships of the dopant type, oxygen vacancy ordering, and ionic conductivity of doped ceria were established. It is found that the ordering of oxygen vacancies depends strongly on the dopant type, and the development of nanosized domains with a higher degree of ordering can lead to a more dramatic decrease of ionic conductivity in doped ceria.
To understand the ceria promotion effect of Pt-CeO(2)/C catalysts on methanol oxidation, microstructural and metal-oxide interactions of Pt-CeO(2)/C catalysts with an atomic ratio of Pt/Ce between 0.14 and 1.4 were systematically examined using high-resolution transmission electron microscopy and electron energy loss spectroscopy (EELS). With an increasing Pt content in the catalysts, Pt particles gradually invaded into the ceria supports and decoration on Pt particles was observed. Simultaneously, the morphology of the supports was dramatically modified with nanocrystalline and amorphous ceria formed between and/or around the Pt particles. It reveals that the Pt-ceria interaction could take place in the catalysts and the influence of the interaction was enhanced with an increasing Pt/Ce ratio. The EELS study demonstrated that the strong Pt-ceria interaction was related to the redox reaction between Pt and ceria. Experimental results also suggested that the strong interaction between Pt and ceria could contribute to the promotion effect of ceria on the oxidation of methanol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.