To examine possible links between neurotoxicant exposure and neuropsychological disorders and child behavior, relative concentrations of lead, mercury, and manganese were examined in prenatal and postnatal enamel regions of deciduous teeth from children with Autism Spectrum Disorders (ASDs), high levels of disruptive behavior (HDB), and typically developing (TD) children. Using laser ablation inductively coupled plasma mass spectrometry, we found no significant differences in levels of these neurotoxicants for children with ASDs compared with TD children, but there was marginal significance indicating that children with ASDs have lower manganese levels. No significant differences emerged between children with HDB and TD children. The current findings challenge the notion that perinatal heavy metal exposure is a major contributor to the development of ASDs and HDB.
Ecological and environmental evidence suggests that Rapa Nui was among the most marginally habitable islands in Eastern Polynesia, with only a fraction of the biotic diversity found on archipelagos to the west, and capable of sustaining many fewer cultigens traditionally transported by Polynesian colonizers. However, archaeological evidence for human dietary adaptations under such restrictions is limited. Little is known about the particulars of the subsistence base and dietary changes on Rapa Nui that may be associated with a hypothesized late prehistoric decline in the quality and diversity of food sources. To better understand prehistoric Rapa Nui diet we examined stable carbon and nitrogen isotope compositions of human teeth along with archaeological faunal material thought to comprise the Rapa Nui food web. Our results indicate that contrary to previous zooarchaeological studies diet was predominantly terrestrial throughout the entire sequence of occupation, with reliance on rats, chickens and C3 plants. While a few individuals may have had access to higher trophic level marine resources, this is evident only later in time (generally post-AD 1600). A decline in (15)N through time was observed, and may be attributed to declines in available terrestrial proteins; however, presently we cannot rule out the effect of changing soil and plant baseline δ(15)N. Our results also suggest differential access to higher trophic level marine resources among contemporaneous populations, but more research is required to clarify this observation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.