The previously determined nucleotide sequence of the porA gene, encoding the class 1 outer membrane protein of meningococcal strain MC50, has been used to clone and sequence the porA gene from two further strains with differing serosubtype specificities. Comparison of the predicted amino acid sequences of the three class 1 proteins revealed considerable structural homology with major variation confined to two discrete regions (VR1 and VR2). The high degree of structural homology between the sequences gave predicted secondary structures that were almost identical, with the variable domains located in hydrophilic regions that are likely to be surface located and hence accessible to antibody binding. The predicted amino acid sequences have been used to define the epitopes recognized by mAbs with serosubtype specificity. A series of overlapping decapeptides spanning each of the class 1 protein sequences have been synthesized on solid-phase supports and probed with mAbs. Antibodies with P1.16 and P1.15 subtype specificity reacted with sequences in the VR2 domain, while antibodies with P1.7 subtype specificity reacted with sequences in the VR1 domain. Further peptides have been constructed to define the minimum epitopes recognized by each antibody. Thus we have been able to define linear peptides on each class 1 protein molecule that are responsible for subtype specificity and that represent targets for a protective immune response.
We have cloned and expressed in Escherichia coli a gene encoding a 15,000-apparent-molecular-weight peptidoglycan-associated outer membrane lipoprotein (PAL) of Haemophilus influenzae. The nucleotide sequence of this gene encodes an open reading frame of 153 codons with a predicted mature protein of 134 amino acids. The amino acid composition and sequence of the predicted mature protein agree with the chemically determined composition and partial amino acid sequence of PAL purified from H. influenzae outer membranes. We have also identified a second gene from H. influenzae that encodes a second 15,000-apparent-molecular-weight protein which is recognized by antiserum against PAL. This protein has been shown to be a lipoprotein. The nucleotide sequence of this gene encodes an open reading frame of 154 codons with a predicted mature protein of 136 amino acids and has limited sequence homology with that of the gene encoding PAL. Southern hybridization analysis indicates that both genes exist as single copies in H. influenzae chromosomal DNA. Both genes encode polypeptides which have amino-terminal sequences similar to those of reported membrane signal peptides and are associated primarily with the outer membrane when expressed in E. coli.
Outer membrane proteins of nontypeable (NT) Haemophilus influenzae are among the major candidates for inclusion in vaccines against these organisms. This article reports the purification of the e (P4) lipoprotein of H. influenzae and the subsequent production of antiserum directed against this protein. The anti-e polyclonal serum cross-reacted with e protein in multiple clinical NT H. influenzae isolates. Monoclonal antibody analysis of e protein showed at least one surface-exposed epitope to be conserved among NT H. influenzae strains. Anti-e serum also had bactericidal activity against multiple clinical isolates of NT H. influenzae. These results are in contrast to previous reports in the literature that purified P4 protein did not elicit biologically active antibodies. Anti-e antibodies exhibited synergistic bactericidal activity directed against NT H. influenzae when mixed with antibodies directed against another Haemophilus lipoprotein, PCP. This bactericidal synergy was observed against a variety of NT clinical isolates. We also report the cloning of the Haemophilus e lipoprotein, or hel, gene encoding the e protein and its expression and processing in Escherichia coli. The nucleotide sequence of the gene and deduced amino acid sequence of the protein are given. These results demonstrate that e protein is a viable candidate to be a component of a vaccine against NT H. influenzae. * Corresponding author. tective against Hib meningitis. To further investigate this protein and to determine the degree of antigenic conservation among NT H. influenzae and the biologic activity of anti-e serum against NT H. influenzae, we purified the e protein and produced an anti-e polyclonal antiserum. This article reports that the purified protein elicited biologically active antibodies against NT H. influenzae and that anti-e OMP serum showed synergistic BC activity when mixed with antiserum against the recombinant PCP protein. We also report the cloning and sequencing of the gene encoding this protein and its expression in Escherichia coli as a lipoprotein. These results show that the e protein is a vaccine candidate against NT H. influenzae. MATERIALS AND METHODS Bacteria. Clinical isolates of NT H. influenzae P860295,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.