In this work we tackle the problem of planning and scheduling preventive maintenance (PM) of sediment-related sewer blockages in a set of geographically distributed sites that are subject to non-deterministic failures. To solve the problem, we extend a combined maintenance and routing (CMR) optimization approach which is a procedure based on two components: (a) first a maintenance model is used to determine the optimal time to perform PM operations for each site and second (b) a mixed integer program-based split procedure is proposed to route a set of crews (e.g., sewer cleaners, vehicles equipped with winches or rods and dump trucks) in order to perform PM operations at a near-optimal minimum expected cost. We applied the proposed CMR optimization approach to two (out of five) operative zones in the city of Bogotá (Colombia), where more than 100 maintenance operations per zone must be scheduled on a weekly basis. Comparing the CMR against the current maintenance plan, we obtained more than 50% of cost savings in 90% of the sites.
Risk-informed asset management is key to maintaining optimal performance and efficiency of urban sewer systems. Although sewer system failures are spatiotemporal in nature, previous studies analyzed failure risk from a unidimensional aspect (either spatial or temporal), not accounting for bidimensional spatiotemporal complexities. This is owing to the insufficiency of good-quality data, which ultimately leads to under-/overestimation of failure risk. Here, we propose a generalized methodology/framework to facilitate a robust spatiotemporal analysis of urban sewer system failure risk, overcoming the intrinsic challenges of data imperfections-e.g., missing data, outliers, and imbalanced information. The framework includes a two-stage data-driven modeling technique that efficiently models the highly rightskewed sewer system failure data to predict the failure risk, leveraging a bidimensional spacetime approach. We implemented our analysis for Bogotá, the capital city of Colombia. We train, test, and validate a battery of machine learning algorithms-logistic regression, decision trees, random forests, and XGBoost-and select the best model in terms of goodnessof-fit and predictive accuracy. Finally, we illustrate the applicability of the framework in planning/scheduling sewer system maintenance operations using state-of-the-art optimization techniques. Our proposed framework can help stakeholders to analyze the failure-risk models' performance under different discrimination thresholds, and provide managerial insights on the model's adequate spatial resolution and appropriateness of decentralized management for sewer system maintenance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.