The formation of adduct ions consisting of uranium oxycations and water was studied using an ion trap-secondary ion mass spectrometer. The U(IV) and U(V) species [UO(OH)]+ and [UO2]+ were produced by bombarding the surface of UO3 using molecular primary ions, and the U(VI) species [UO2(OH)]+ was generated by O2 oxidation of [UO(OH)]+ in the gas phase. All three ions formed H2O adducts by termolecular association reactions: [UO(OH)]+ (a U(IV) species) added three water molecules, for a total of five ligands; [UO2]+ (U(V)) added three or four water molecules, for a total of five or six ligands; and [UO2(OH)]+ (U(VI)) added four water molecules for a total of six ligands. Addition of a seventh ligand was not observed in any of the systems. These analyses showed that the optimum extent of ligation increased with increasing oxidation state of the uranium metal. Hard kinetic models were fit to the time-dependent mass spectral data using adaptive simulated annealing (ASA) to estimate reaction rates and rate constants from kinetic data sets. The values determined were validated using stochastic kinetic modeling and resulted in rate data for all forward and reverse reactions for the ensemble of reactive ions present in the ion trap. A comparison of the forward rate constants of the hydration steps showed that in general, formation of the monohydrates was slow, but that hydration efficiency increased upon addition of the second H2O. Addition of the third H2O was less efficient (except in the case of [UO2]+), and addition of the fourth H2O was even more inefficient and did not occur at all in the [UO2(OH)]+ system. Reverse rate constants also decreased with increasing ligation by H2O, except in the case of [UO(OH)(H2O)4]+, which prefers to quickly revert to the trihydrate. These findings indicate that stability of the hydrate complexes [UO y H z (H2O) n ]+ increases with increasing n, until the optimum number of ligands is achieved. The results enable correlation of uranium hydration behavior with oxidation state.
Gas-phase complexes containing dioxouranium(V) cations ([UO(2)](+)) ligated with two or three sigma-donating acetone ligands reacted with dioxygen to form [UO(2)(A)(2,3)(O(2))](+), where A is acetone. Collision-induced dissociation studies of [UO(2)(A)(3)(O(2))](+) showed initial loss of acetone, followed by elimination of O(2), which suggested that O(2) was bound more strongly than the third acetone ligand, but less strongly than the second. Similar behavior was observed for complexes in which water was substituted for acetone. Binding of dioxygen to [UO(2)](+) containing zero, one, or four ligands did not occur, nor did it occur for analogous ligated U(IV)O(2) or U(VI)O(2) ions. For example, only addition of acetone and/or H(2)O occurred for the U(VI) species [UO(2)OH](+), with the ligand addition cascade terminating in formation of [UO(2)OH(A)(3)](+). Similarly, the U(IV) species [UOOH](+) added donor ligands, which produced the mixed-ligand complex [UOOH(A)(3)(H(2)O)](+) as the preferred product at the longest reaction times accessible. Since dioxygen normally functions as an electron acceptor, an alternative mode for binding dioxygen to the cationic U(V)O(2) center is indicated that is dependent on the presence of an unpaired electron and donor ligands in the uranyl valence orbitals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.