Lithium-ion battery performance is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact both the solvation and diffusivity of Li ions. In this work, we used first-principles molecular dynamics to examine the solvation and diffusion of Li ions in the bulk organic solvents ethylene carbonate (EC), ethyl methyl carbonate (EMC), and a mixture of EC and EMC. We found that Li ions are solvated by either carbonyl or ether oxygen atoms of the solvents and sometimes by the PF6(-) anion. Li(+) prefers a tetrahedrally coordinated first solvation shell regardless of which species are involved, with the specific preferred solvation structure dependent on the organic solvent. In addition, we calculated Li diffusion coefficients in each electrolyte, finding slightly larger diffusivities in the linear carbonate EMC compared to the cyclic carbonate EC. The magnitude of the diffusion coefficient correlates with the strength of Li(+) solvation. Corresponding analysis for the PF6(-) anion shows greater diffusivity associated with a weakly bound, poorly defined first solvation shell. These results can be used to aid in the design of new electrolytes to improve Li-ion battery performance.
The development of sodium and potassium batteries offers a promising way to meet the scaling and cost challenges of energy storage. However, compared to Li+, several intrinsic properties of Na+ and K+, including their solvation and dynamics in typical organic electrolytes utilized in battery applications, are less well-understood. Here, we report a systematic investigation of Na+ and K+ in ethylene carbonate (EC) using first-principles molecular dynamics simulations. Our simulations reveal significant differences in the solvation structure and dynamical properties of Na+ and K+ compared to Li+. We find that, in contrast to Li+ which exhibits a well-defined first solvation shell, the larger Na+ and K+ ions show more disordered and flexible solvation structures. These differences in solvation were found to significantly influence the ion dynamics, leading to larger diffusion coefficients of Na+ and K+ compared to Li+. Our simulations also reveal a clear and interesting analog in the behavior of the ions in EC and aqueous environments, particularly in the specific ion effects on the solvent dynamics. This work provides fundamental understanding of the intrinsic properties of Na+ and K+ in organic electrolytes, which may ultimately influence the intercalation mechanism at the electrode–electrolyte interface and therefore battery performance, lifetime, and safety.
We review the application of the finite element (FE) method to ab initio electronic structure calculations in solids. The FE method is a general approach for the solution of differential and integral equations which uses a strictly local, piecewise-polynomial basis. Because the basis is composed of polynomials, the method is completely general and its accuracy is systematically improvable. Because the basis is strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited for parallel implementation. The method thus combines significant advantages of both real-space-grid and basis-oriented approaches, and so is well suited for large, accurate ab initio calculations. We review the construction and properties of the required FE bases and their use in the self-consistent solution of the Kohn–Sham equations of density functional theory.
A class of spintronic materials, the zinc-blende ͑ZB͒ half metals, has recently been synthesized in thin-film form. We apply all-electron and pseudopotential ab initio methods to investigate the electronic and structural properties of ZB Mn and Cr pnictides and carbides, and find six compounds to be half metallic at or near their respective equilibrium lattice constants, making them excellent candidates for growth at low strain. Based on these findings, we further propose substrates on which the growth may be accomplished with minimum strain. Our findings are supported by the recent successful synthesis of ZB CrAs on GaAs and ZB CrSb on GaSb, where our predicted equilibrium lattice constants are within 0.5% of the lattice constants of the substrates on which the growth was accomplished. We confirm previous theoretical results for ZB MnAs, but find ZB MnSb to be half metallic at its equilibrium lattice constant, whereas previous work has found it to be only nearly so. We report here two low-strain half metallic ZB compounds, CrP and MnC, and suggest appropriate substrates for each. Unlike the other five compounds, we predict ZB MnC to become/remain half metallic with compression rather than expansion, and to exhibit metallicity in the minority-rather than majority-spin channel. These fundamentally different properties of MnC can be connected to substantially greater p-d hybridization and d-d overlap, and correspondingly larger bonding-antibonding splitting and smaller exchange splitting. We examine the relative stability of each of the six ZB compounds against NiAs and MnP structures, and find stabilities for the compounds not yet grown comparable to those already grown.
We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including the first fully three-dimensional electronic band structures calculated by the method. PACS 71.15-m, 02.70.Dh Typeset using REVT E X
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.