In most of Fennoscandia, moose Alces alces is intensively managed by the use of age and sex specific harvesting. This includes strong male biased harvesting, which over the last decade has resulted in a change in the sex and age composition of the populations. During the same period of time, a reduction in the proportion of male calves in the harvest has occurred all over Norway, probably reflecting a change in the secondary sex ratio. In order to examine for any causal link between these two patterns, we manipulated the structural composition of an isolated island population of moose in northern Norway and at the same time closely monitored the variation in the secondary sex ratio. In the first stage of the project, which was assumed to represent the conditions in a natural, unhunted moose population, the proportion of male calves increased significantly with the age of their fathers. Potentially, as a consequence of the high mean adult male age in the population, the secondary sex ratio was highly male biased. When we altered the male segment of the population, leaving only young (≤ 2½ years old) males as potential mates for the females, a significant increase in the proportion of female calves occurred in the population. Finally, in the last 3‐years stage of the project, we reduced the adult sex ratio in the population to about 23% males and kept the adult male age relatively high. This again led to an increasing secondary sex ratio. These results suggest that the age composition of males in the population may affect the secondary sex ratio. The general significance of these results was supported by a larger temporal decrease in the proportion of males that were shot in the areas of Norway with larger changes in the sex composition of the hunting quotas than in the regions in which a less extreme harvest strategy were practised.
To elucidate the colonization of freshwater fish into Norway following the last deglaciation of Europe 10,000 years ago, we have performed a survey using mitochondrial DNA variation (20 populations) and multilocus DNA fingerprinting (14 populations) of the widely distributed perch (Perca fluviatilis) from the Scandinavian peninsula and the Baltic Sea. Sequence analysis of a 378 bp segment of the perch mitochondrial control region (D-loop) revealed 12 different haplotypes. A nested clade analysis was performed with the aim of separating population structure and population history. This analysis revealed strong geographical structuring of the Scandinavian perch populations. In addition, the level of genetic diversity was shown to differ considerably among the various populations as measured by the bandsharing values (S-values) obtained from multilocus DNA fingerprinting, with intrapopulation S-values ranging from 0.19 in Sweden to 0.84 in the central part of Norway. Analysis of the intrapopulation S-values, with S-value as a function of lake surface area and region, showed that these differences were significant. The mitochondrial and DNA fingerprinting data both suggest that the perch colonized Norway via two routes: one from the south following the retreating glacier, and the other through Swedish river systems from the Baltic Sea area. Perch utilizing the southern route colonized the area surrounding Oslofjord and the lakes which shortly after deglaciation were close to the sea. Fish migrating from the Baltic Sea seem to have reached no further than the east side of Oslofjord, where they presumably mixed with perch which had entered via the southern route. It seems likely that the migration events leading to the current distribution of perch also apply to other species of freshwater fish showing a similar distribution pattern.
The genetic structure of bank voles Clethrionomys glareolus was determined from analyses of mitochondrial DNA (mtDNA) sequences, and compared with previous data on geographical synchrony in population density fluctuations. From 31 sample sites evenly spaced out along a 256-km transect in SE Norway a total of 39 distinct mtDNA haplotypes were found. The geographical distribution of the haplotypes was significantly non-random, and a cladistic analysis of the evolutionary relationship among haplotypes shows that descendant types were typically limited to a single site, whereas the ancestral types were more widely distributed geographically. This geographical distribution pattern of mtDNA haplotypes strongly indicates that the range and amount of female dispersal is severely restricted and insufficient to account for the previously observed synchrony in population density fluctuations. We conclude that geographical synchrony in this species must be caused by factors that are external to the local population, such as e.g. mobile predators.
The pattern and scale of the genetic structure of populations provides valuable information for the understanding of the spatial ecology of populations, including the spatial aspects of density fluctuations. In the present paper, the genetic structure of periodically fluctuating lemmings (Dicrostonyx groenlandicus) in the Canadian Arctic was analysed using mitochondrial DNA (mtDNA) control region sequences and four nuclear microsatellite loci. Low genetic variability was found in mtDNA, while microsatellite loci were highly variable in all localities, including localities on isolated small islands. For both genetic markers the genetic differentiation was clear among geographical regions but weaker among localities within regions. Such a pattern implies gene flow within regions. Based on theoretical calculations and population census data from a snap-trapping survey, we argue that the observed genetic variability on small islands and the low level of differentiation among these islands cannot be explained without invoking long distance dispersal of lemmings over the sea ice. Such dispersal is unlikely to occur only during population density peaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.