The presence of snow and its relationship to surrounding vegetation significantly impacts the surface energy balance. For accurate atmospheric model simulations, the degree to which a snowpack can cover vegetation must be realistically represented. Both vegetation height and snow depth must be reasonably known to determine the amount of masking.The Regional Atmospheric Modeling System/Land Ecosystem-Atmosphere Feedback, version two (RAMS/ LEAF-2) snow model was modified to simulate snow depth in addition to snow water equivalent and was driven offline with observed atmospheric forcing data. The model was run for five of the Boreal Ecosystem-Atmosphere Study (BOREAS) surface mesonet stations over the 1995/96 winter. The time evolution of simulated snow depth was compared with the observed snow depth. Averaged over the winter, the modeled snow depth at the four low-wind stations was within 0.09 m of the observations, and the average percent error was 27%, while the one wind-blown station was considerably worse. The average depth error at all five stations was Ϯ0.08 m. This is shown to be sufficient to reasonably account for the surface energy balance effects of vegetation protruding through the snow.
[1] Land cover changes alter the near surface weather and climate. Changes in land surface properties such as albedo, roughness length, stomatal resistance, and leaf area index alter the surface energy balance, leading to differences in near surface temperatures. This study utilized a newly developed land cover data set for the eastern United States to examine the influence of historical land cover change on June temperatures and precipitation. The new data set contains representations of the land cover and associated biophysical parameters for 1650, 1850, 1920, and 1992, capturing the clearing of the forest and the expansion of agriculture over the eastern United States from 1650 to the early twentieth century and the subsequent forest regrowth. The data set also includes the inferred distribution of potentially water-saturated soils at each time slice for use in the sensitivity tests. The Regional Atmospheric Modeling System, equipped with the Land Ecosystem-Atmosphere Feedback (LEAF-2) land surface parameterization, was used to simulate the weather of June 1996 using the 1992, 1920, 1850, and 1650 land cover representations. The results suggest that changes in surface roughness and stomatal resistance have caused present-day maximum and minimum temperatures in the eastern United States to warm by about 0.3°C and 0.4°C, respectively, when compared to values in 1650. In contrast, the maximum temperatures have remained about the same, while the minimums have cooled by about 0.1°C when compared to 1920. Little change in precipitation was found.Citation: Strack, J. E., R. A. Pielke Sr., L. T. Steyaert, and R. G. Knox (2008), Sensitivity of June near-surface temperatures and precipitation in the eastern United States to historical land cover changes since European settlement, Water Resour. Res.,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.