Neuron, astrocyte, and oligodendrocyte cultures which were established from developing rat brain were examined for their utilization of glucose, ketone bodies, and free fatty acids by oxidative processes. 14CO2 production was measured in these cells from [1-14C] or [6-14C]glucose; [1-14C]octanoate and [1-14C], [6-14C], or [16-14C]palmitate; and [3-14C]acetoacetate and D(-)-3-hydroxy[3-14C]butyrate. Pyruvate dehydrogenase (EC 1.2.4.1.) and 3-oxoacid-CoA transferase (EC 2.8.3.5) activities were found at high levels in each of the cell populations. Astrocytes and oligodendrocytes produced much more 14CO2 from [1-14C]glucose than from [6-14C]glucose, indicating substantial hexose monophosphate shunt activity. This process was not as active in neurons. All three cell populations readily utilized the ketone bodies for oxidative metabolism at rates 7-9 times greater than they utilized glucose. Only astrocytes were able to utilize fatty acids for 14CO2 production, and the rate of utilization was greater than that of the ketone bodies. We found that the metabolic patterns of these brain cells which were derived from the developing brain complement the nature of the diet of the suckling animal which is rich in fat and low in carbohydrate. They readily utilized the ketone bodies or fatty acids and spared glucose for processes that metabolites of fat cannot fulfill.
The oxidation of the fatty acids octanoate and palmitate to CO2 and the ketone bodies acetoacetate and D-(-)-3-hydroxybutyrate was examined in astrocytes that were prepared from cortex of 2-day-old rat brain and grown in primary culture to confluence. Accumulation of acetoacetate (by mass) in the culture medium of astrocytes incubated with octanoate (0.3-0.5 mM) was 50-90 nmol C2 units h-1 mg of protein-1. A similar rate was obtained using radiolabeled tracer methodology with [1-14C]octanoate as labeled substrate. The results from the radiolabeled tracer studies using [1-14C]- and [7-14C]octanoate and [1-14C]-, [13-14C]-, and [15-14C]palmitate indicated that a substantial proportion of the omega-terminal four-carbon unit of these fatty acids bypassed the beta-ketothiolase step of the beta-oxidation pathway and the 3-hydroxy-3-methylglutaryl (HMG)-CoA cycle of the classic ketogenic pathway. The [14C]acetoacetate formed from the 1-14C-labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. By contrast, the [14C]acetoacetate formed from (omega-1)-labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1, whereas that formed from the (omega-3)-labeled fatty acid contained 20% of the label at carbon 3 and 80% at carbon 1. These results indicate that acetoacetate is primarily formed either by the action of 3-oxo-acid-CoA transferase (EC 2.8.3.5) or acetoacetyl-CoA deacylase (EC 3.1.2.11) or both on acetoacetyl-CoA and not by the action of the mitochondrial HMG-CoA cycle involving HMG-CoA lyase (EC 4.1.3.4), which was readily detected, and HMG-CoA synthase (EC 4.1.3.5), which was barely measurable.
The synthesis of palmitate, stearate, and cholesterol in liver and nervous tissues (brain, cord, and nerve) of Sprague-Dawley rats was determined using deuterated water (D2O) and mass isotopomer analysis. Rats were given 4% deuterium in their drinking water after each receiving an intraperitoneal priming dose. Animals were killed at 1, 2, 4, and 8 wk for deuterium enrichment in body water and determination of mass isotopomer distribution in lipids from various tissues. In 1 wk, the enrichment in the body water reached a plateau of 2.6%, which is 65% of that in the drinking water. We observed the maximum incorporation number (N) in all lipids to be higher than those previously observed, being 22, 24, and 30 for liver palmitate, stearate, and cholesterol, respectively, and N may vary among tissues. Using a single exponential model, we found the half-time (t1/2) and the plateau levels of the newly synthesized lipids of the nervous tissues (t1/2 values ranging from 5 to 28 days) to be different from those of the liver (t1/2 values < or = 4 days) in this relatively long-term study. Mass isotopomer distribution analysis and D2O can be used not only to quantitate the replacement rate of many lipids in various compartments but may also be used to elucidate the tissue-specific synthetic pathways from N.
Fractional biosynthesis of palmitate, stearate, and cholesterol was determined with deuterated water (2H2O) using mass isotopomer analysis in Hep G2 and MCA sarcoma cells in culture. The method employed differs from previous ones in that the number of deuterium atoms from 2H2O incorporated into newly synthesized molecules was determined and not assumed. After correction for background natural abundances, the isotopomer distribution due to deuterium incorporation in fatty acids and cholesterol was shown to follow a simple binomial distribution depending on the deuterium enrichment in water (p) and the maximum number of deuterium atoms incorporated per molecule (N). Under a wide range of 2H2O enrichments, N could be determined to be 17 for palmitate, 20 for stearate, and 20 for cholesterol by regression analysis or from a series of consecutive mass isotopomer ratios. The fraction derived from de novo synthesis was given by the ratio of the observed to the theoretical deuterium enrichment, which is the product (N x p). The new synthesized fraction of palmitate and stearate by Hep G2 cells for the length of the experiment was found to be 77 and 65%, respectively. These values were confirmed by experiments with [U-13C]glucose as the precursor. In MCA sarcoma cells grown in lipid-poor medium, the average values for fractional synthesis of palmitate, stearate, and cholesterol were 70, 35, and 70%, respectively. This approach should be generally applicable to the simultaneous determined of fractional synthesis of a number of compounds with either deuterium or 13C tracers. Its application is only limited by the accuracy of mass spectrometric analysis.
To determine the transport and utilization of dietary saturated, monounsaturated, and n‐6 and n‐3 polyunsaturated fatty acids for the developing brain and other organs, artificially reared rat pups were fed a rat milk substitute containing the perdeuterated (each 97 atom% deuterium) fatty acids, i.e., palmitic, stearic, oleic, linoleic, and linolenic, from day 7 after birth to day 14 as previously described. Fatty acids in lipid extracts of the liver, lung, kidney, and brain were analyzed by gas chromatography‐mass spectrometry to determine their content of each of the deuterated fatty acids. The uptake and metabolism of perdeuterated fatty acid lead to the appearance of three distinct groups of isotopomers: the intact perdeuterated, the newly synthesized (with recycled deuterium), and the natural unlabeled fatty acid. The quantification of these isotopomers permits the estimation of uptake and de novo synthesis of these fatty acids. Intact perdeuterated palmitic, stearic, and oleic acids from the diet were found in liver, lung, and kidney, but not in brain. By contrast, perdeuterated linoleic acid was found in all these organs. Isotopomers of fatty acid from de novo synthesis were observed in palmitic, oleic, and stearic acids in all tissues. The highest enrichment of isotopomers with recycled deuterium was found in the brain. The data indicate that, during the brain growth spurt and the prelude to myelination, the major saturated and monounsaturated fatty acids in brain lipids are exclusively produced locally by de novo biosynthesis. Consequently, the n‐6 and n‐3 polyunsaturated fatty acids must be transported and delivered to the brain by highly specific mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.