G protein-coupled receptors (GPCRs) are critical drug targets. GPCRs convey signals from the extracellular to the intracellular environment through G proteins. Some ligands that bind to GPCRs activate different downstream signaling pathways. G protein activation, or -arrestin biased signaling, involves ligands binding to receptors and stabilizing conformations that trigger a specific pathway. -arrestin biased signaling has become a hot target for structure-based drug discovery. However, challenges include that there are few crystal structures available in the Protein Data Bank and that GPCRs are highly dynamic. Hence, molecular dynamics (MD) simulations are especially valuable for obtaining detailed mechanistic information, including identification of allosteric sites and understanding modulators’ interactions with receptors and ligands. Here, we highlight recent MD simulation studies and enhanced sampling methods used to study biased G protein-coupled receptor signaling and their conformational dynamics as well as applications to drug discovery.
G protein-coupled receptors (GPCRs) are critical drug targets. GPCRs convey signals from the extracellular to the intracellular environment through G proteins. There is evidence that some ligands that bind to the GPCRs activate different downstream signaling pathways. G protein activation or -arrestin biased signaling involves ligands binding to receptors and stabilizing conformations that trigger a specific pathway. Molecular dynamics (MD) simulations are especially valuable for obtaining detailed mechanistic information, including identification of allosteric sites and understanding modulators' interactions between receptors and ligands. Here, we highlight recent simulation studies and methods used to study biased G protein-coupled receptor signaling and their conformational dynamics. We also highlight applications of MD simulations to drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.