The concept of slippery lubricant-infused surfaces has shown promising potential in antifouling for controlling detrimental biofilm growth. In this study, non-toxic silicone oil was either impregnated into porous surface nanostructures, referred as liquid infused surface (LIS), or diffused into a polydimethylsiloxane (PDMS) matrix, referred to as a swollen PDMS (S-PDMS), making two kinds of slippery surfaces. The slippery lubricant layers have extremely low contact angle hysteresis and both slippery surfaces showed superior anti-wetting performances with droplets bouncing off or rolling transiently after impacting the surfaces. We further demonstrated that water droplets can remove dust from the slippery surfaces thus showing a "cleaning effect". Moreover, "coffee-ring" effects were inhibited on these slippery surfaces after droplet evaporation, and deposits could be easily removed. The clinically biofilm-forming species P. aeruginosa (as a model system) was used to further evaluate the antifouling potential of the slippery surfaces. The dried biofilm stains could still be easily removed from the slippery surfaces. Additionally, both slippery surfaces prevented around 90% of bacterial biofilm growth after 6 days, compared to the unmodified control PDMS surfaces. This investigation also extended across another clinical pathogen, S. epidermidis, and showed similar results. The anti-wetting and anti-fouling analysis in this study will facilitate the development of more efficient slippery platforms for controlling biofouling.
A common benchmark in the brain tissue mechanics literature is that the properties of acute brain slices should be measured within 8 hours of the experimental animal being sacrificed. The core assumption is that — since there is no substantial protein degradation during this time — there will be no change to elastic modulus. This assumption overlooks the possibility of other effects (such as osmotic swelling) that may influence the mechanical properties of the tissue. To achieve consistent and accurate analysis of brain mechanics, it is important to account for or mitigate these effects. Using atomic force microscopy (AFM), tissue hydration and volume measurements, we find that acute brain slices in oxygenated artificial cerebrospinal fluid (aCSF) with a standard osmolarity of 300 mOsm/l experience rapid swelling, softening, and increases in hydration within the first two hours after slicing. Reductions in elastic modulus can be partly mitigated by addition of chondroitinase ABC enzyme (CABC). Increasing aCSF osmolarity to 400 mOsm/l does not prevent softening but may hasten equilibration of samples to a point where measurements of relative elastic modulus are consistent across experiments.
A common benchmark in the brain tissue mechanics literature is that the properties of acute brain slices should be measured within 8 h of the experimental animal being sacrificed. The core assumption is that—since there is no substantial protein degradation during this time—there will be no change to elastic modulus. This assumption overlooks the possibility of other effects (such as osmotic swelling) that may influence the mechanical properties of the tissue. To achieve consistent and accurate analysis of brain mechanics, it is important to account for or mitigate these effects. Using atomic force microscopy (AFM), tissue hydration and volume measurements, we find that acute brain slices in oxygenated artificial cerebrospinal fluid (aCSF) with a standard osmolarity of 300 mOsm/l experience rapid swelling, softening, and increases in hydration within the first 2 hours after slicing. Reductions in elastic modulus can be partly mitigated by addition of chondroitinase ABC enzyme (CHABC). Increasing aCSF osmolarity to 400 mOsm/l does not prevent softening but may hasten equilibration of samples to a point where measurements of relative elastic modulus are consistent across experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.