Birth weight is a strong determinant of Nglom and thereby of glomerular size in the postnatal kidney. The findings support the hypothesis that LBW by impairing nephron development is a risk factor for hypertension and ESRD in adulthood.
Several studies have shown that total nephron (glomerular) number varies widely in normal human kidneys. Whereas the studies agree that average nephron number is approximately 900,000 to 1 million per kidney, numbers for individual kidneys range from approximately 200,000 to >2.5 million. Several studies have shown loss of glomeruli due to age-related glomerulosclerosis. The rates of loss vary among individuals depending upon blood pressure, diseases affecting the kidney, and other attributes of health, but most of the variation in nephron number is present at birth and is therefore developmentally determined. For example, in a relatively small study of nephron number in 15 children <3 months of age, we found that nephron number ranged from approximately 250,000 to 1.1 million. Given that no new nephrons are formed in human kidneys after approximately 36 weeks' gestation, much interest has focused on renal function and health in individuals born with relatively low nephron endowment. Several studies have reported a direct correlation between birth weight and nephron number and an indirect association between nephron number and blood pressure. Associations between low birth weight and cardiovascular disease, including hypertension, have also been widely reported. This report provides an update on our current knowledge of human nephron number and the associations with adult health and disease.
Developmental programming of non-communicable diseases is now an established paradigm. With respect to hypertension and chronic kidney disease, adverse events experienced in utero can affect development of the fetal kidney and reduce final nephron number. Low birth weight and prematurity are the most consistent clinical surrogates for a low nephron number, and are associated with increased risk of hypertension, proteinuria and kidney disease in later life. Rapid weight gain in childhood or adolescence further compounds these risks. Low birth weight, prematurity and rapid childhood weight gain should alert clinicians to an individual's life-long risk of hypertension and kidney disease, prompting education to minimize additional risk factors and ensuring follow-up. Birth weight and prematurity are significantly impacted by maternal nutrition and health during pregnancy. Optimization of maternal health and early childhood nutrition could therefore attenuate this programming cycle and reduce the global burden of hypertension and kidney disease in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.