The reaction kinetics of nitric oxide autoxidation in aerobic solutions were investigated by direct observation of the nitrite ion product and by trapping the strongly oxidizing and nitrosating intermediates formed in this reaction. The rate behavior observed for nitrite formation [rate = k3[O2][NO]2, k3 = (6 +/- 1.5) x 10(6) M-2 s-1 at 22 degrees C] was the same as found for oxidation of Fe(CN)6(4-) and of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and as for the nitrosation of sulfanilamide. There was a slight decrease in k3 to (3.5 +/- 0.7) x 10(6) M-2 s-1 at 37 degrees C. The second-order dependency for NO was observed at NO concentrations as low as 3 microM. The results of the competitive kinetics studies suggest that the key oxidizing intermediates, species which are both strong oxidants and nitrosating agents, are not one of those commonly proposed (NO2, N2O3, NO+, or O2NO-) but are one or more as yet uncharacterized NOx species.
The critical regulatory function of nitric oxide (NO) in many physiologic processes is well established. However, in an aerobic aqueous environment NO is known to generate one or more reactive and potentially toxic nitrogen oxide (NOx) metabolites. This has led to the speculation that mechanisms must exist in vivo by which these reactive intermediates are detoxified, although the nature of these mechanisms has yet to be elucidated. This report demonstrates that among the primary bioorganic products of the reaction of cellular constituents with the intermediates of the NO/O2 reaction are S-nitrosothiol (S-NO) adducts. Anaerobic solutions of NO are not capable of nitrosating cysteine or glutathione, while S-NO adducts of these amino acids are readily formed in the presence of O2 and NO. Investigation of the kinetics for the formation of these S-NO adducts has revealed a rate equation of d[RSNO]/dt = kSNO[NO]2[O2], where kSNO = (6 +/- 2) x 10(6) M-2S-1, a value identical to that for the formation of reactive intermediates in the autoxidation of NO. Competition studies performed with a variety of amino acids, glutathione, and azide have shown that cysteine residues have an affinity for the NOx species that is 3 orders of magnitude greater than that of the nonsulfhydryl amino acids, and > 10(6) times greater than that of the exocyclic amino groups of DNA bases. The dipeptide alanyltyrosine reacts with the intermediates of the NO/O2 reaction with an affinity 150 times less than that of the sulfhydryl-containing compounds. Furthermore, Chinese hamster V79 lung fibroblasts depleted of glutathione display enhanced cytotoxicity on exposure to NO.(ABSTRACT TRUNCATED AT 250 WORDS)
Oxidation at Cys66 of rat liver aryl suflotransferase IV alters the enzyme's catalytic activity, pH optima and substrate specificity. Although this is a cytosolic detoxification enzyme, the pH optimum for the standard assay substrate 4-nitrophenol is at pH 5.5; upon oxidation, the optimum changes to the physiological pH range. The principal effect of the change in pH optimum is activation, which is manifest by an increase in K'cat without any major influence on substrate binding. In contrast, with tyrosine methyl ester as a substrate, the enzyme's optimum activity occurs at pH 8.0; upon oxidation, it ceases to be a substrate at any pH. The presence of Cys66 was essential for activation to occur, thereby providing a putative reason underlying the conserved nature of this cysteine throughout the phenol sulfotransferase family. Mapping of disulfides by mass spectrometry showed the critical event to be the oxidation of Cys66 to form a disulfide with either Cys232 or glutathione, either one is effective. These results point to a mechanism for regulating the activity of a key enzyme in xenobiotic detoxication during cellular oxidative stress.
Intramolecular isotope effects associated with the benzylic hydroxylation of a series of selectively deuterated isomeric xylenes and 4,4'-dimethylbiphenyl as catalyzed by various rat liver microsomal preparations and CYP2B1 were determined. Substrate analogs in which each methyl group contained either one (d2 substrates) or two (d4 substrates) deuterium atoms were used to determine the intrinsic isotope effect for the reaction. Specific values of the individual primary (P) and secondary isotope effects (S) were determined. P ranged from a low of 5.32 +/- 0.48 to a high of 7.57 +/- 0.42 depending upon the specific cytochrome P450 preparation used for catalysis. S had an average value of 1.03. The d3 substrates allowed exploration of the effect of distance on the magnitude of the observed isotope effect. The results indicate that the distance of 6.62 A that separates the carbon atoms of the para methyl groups of p-xylene is insufficient to suppress (mask) the intrinsic isotope effect for benzylic hydroxylation by all of the enzyme preparations examined. Conversely, a distance of 11.05 A, the minimal separation between the carbon atoms of the para methyl groups of p,p'-dimethylbiphenyl, is large enough to almost completely mask the intrinsic isotope effect for benzylic hydroxylation by the same set of enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.