Mutations in the genes for amyloid precursor protein (APP) and presenilins (PS1, PS2) increase production of -amyloid 42 (A 42 ) and cause familial Alzheimer's disease (FAD). Transgenic mice that express FAD mutant APP and PS1 overproduce A 42 and exhibit amyloid plaque pathology similar to that found in AD, but most transgenic models develop plaques slowly. To accelerate plaque development and investigate the effects of very high cerebral A 42 levels, we generated APP/PS1 double transgenic mice that coexpress five FAD mutations (5XFAD mice) and additively increase A 42 production. 5XFAD mice generate A 42 almost exclusively and rapidly accumulate massive cerebral A 42 levels. Amyloid deposition (and gliosis) begins at 2 months and reaches a very large burden, especially in subiculum and deep cortical layers. Intraneuronal A 42 accumulates in 5XFAD brain starting at 1.5 months of age (before plaques form), is aggregated (as determined by thioflavin S staining), and occurs within neuron soma and neurites. Some amyloid deposits originate within morphologically abnormal neuron soma that contain intraneuronal A. Synaptic markers synaptophysin, syntaxin, and postsynaptic density-95 decrease with age in 5XFAD brain, and large pyramidal neurons in cortical layer 5 and subiculum are lost. In addition, levels of the activation subunit of cyclin-dependent kinase 5, p25, are elevated significantly at 9 months in 5XFAD brain, although an upward trend is observed by 3 months of age, before significant neurodegeneration or neuron loss. Finally, 5XFAD mice have impaired memory in the Y-maze. Thus, 5XFAD mice rapidly recapitulate major features of AD amyloid pathology and may be useful models of intraneuronal A 42 -induced neurodegeneration and amyloid plaque formation.
beta-site APP cleaving enzyme 1 (BACE1) is the beta-secretase enzyme required for generating pathogenic beta-amyloid (Abeta) peptides in Alzheimer's disease (AD). BACE1 knockout mice lack Abeta and are phenotypically normal, suggesting that therapeutic inhibition of BACE1 may be free of mechanism-based side effects. However, direct evidence that BACE1 inhibition would improve cognition is lacking. Here we show that BACE1 null mice engineered to overexpress human APP (BACE1(-/-).Tg2576(+)) are rescued from Abeta-dependent hippocampal memory deficits. Moreover, impaired hippocampal cholinergic regulation of neuronal excitability found in the Tg2576 AD model is ameliorated in BACE1(-/-).Tg2576(+) bigenic mice. The behavioral and electrophysiological rescue of deficits in BACE1(-/-).Tg2576(+) mice is correlated with a dramatic reduction of cerebral Abeta40 and Abeta42 levels and occurs before amyloid deposition in Tg2576 mice. Our gene-based approach demonstrates that lower Abeta levels are beneficial for AD-associated memory impairments, validating BACE1 as a therapeutic target for AD.
Time-dependent, learning-related changes in hippocampal excitability were evaluated by recording from rabbit CA1 pyramidal neurons in slices prepared at various times after acquisition of trace eyeblink conditioning. Increased excitability (reduced postburst afterhyperpolarizations and reduced spike-frequency adaptation) was seen as early as 1 hr after acquisition to behavioral criterion, was maximal in neurons studied 24 hr later, and returned to baseline within 7 d, whereas behavioral performance remained asymptotic for months. Neurons were held at Ϫ67 mV to equate voltage-dependent effects. No learningrelated effects were observed on input resistance, actionpotential amplitude or duration, or resting membrane potential. The excitability changes were learning-specific, because they were not seen in neurons from very slow learning (exhibited Ͻ30% conditioned responses after 15 training sessions) or from pseudoconditioned control rabbits. Neurons from rabbits that displayed asymptotic behavioral performance after longterm retention testing (an additional training session 14 d after learning) were also indistinguishable from control neurons. Thus, the increased excitability of CA1 neurons was not performance-or memory-dependent. Rather, the time course of increased excitability may represent a critical window during which learning-specific alterations in postsynaptic excitability of hippocampal neurons are important for consolidation of the learned association elsewhere in the brain.
The role of the hippocampus (HFC) in trace eye-blink conditioning was evaluated using a 100-ms tone conditioned stimulus (CS), a 300-or 500-ms trace interval, and a 150-ms air puff unconditioned stimulus (UCS). Rabbits received complete hippocampectomy (dorsal & ventral), sham lesions, or neocortical lesions. Hippocampectomy produced differential effects in relation to the trace interval used. With a 300-ms trace interval, HPC-lesioned Ss showed profound resistance to extinction after acquisition. With a 500-ms trace interval, HPC-lesioned Ss did not learn the task (only 22% conditioned responses (CRs) after 25 sessions, whereas controls showed Ͼ80% after 10 sessions), and on the few trials in which a CR occurred, most were "nonadaptive" short-latency CRs (i.e., they started during or just after the CS and always terminated prior to UCS onset). The authors conclude that the HPC encodes a temporal relationship between CS and UCS, and when the trace interval is long enough (e.g., 500 ms), that the HPC is necessary for associative learning of the conditioned eye-blink response.
Summary Genomic studies demonstrate that while the majority of the mammalian genome is transcribed, only about 2% of these transcripts are protein coding. We have been investigating how the long, polyadenylated Evf2 non-coding RNA regulates transcription of homeodomain transcription factors DLX5 and DLX6 in the developing mouse forebrain. Here we show that in developing ventral forebrain, Evf2 recruits DLX and MECP2 transcription factors to key DNA regulatory elements in the Dlx 5/6 intergenic region and controls Dlx5, Dlx6, and GAD67 expression through trans and cis-acting mechanisms. Evf2 mouse mutants have reduced numbers of GABAergic interneurons in early post-natal hippocampus and dentate gyrus. Although the numbers of GABAergic interneurons and GAD67 RNA levels return to normal in Evf2 mutant adult hippocampus, reduced synaptic inhibition occurs. These results suggest that non-coding RNA-dependent balanced gene regulation in embryonic brain is critical for proper formation of GABA-dependent neuronal circuitry in adult brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.