Recent evidence suggests that the previously enigmatic cell type designated plasmacytoid monocytes can function as dendritic cells and contribute substantially to both innate and adaptive immunity. This cell type has previously been described only in bone marrow, blood, and organized lymphoid tissue, but not at effector sites with direct Ag exposure such as the mucosae. Plasmacytoid dendritic cells (P-DCs) matured in vitro can induce T cells to produce allergy-promoting Th2 cytokines; therefore, their possible occurrence in nasal mucosa during experimentally elicited allergic rhinitis was examined. Patients with silent nasal allergy were challenged topically with relevant allergen daily for 7 days. Biopsy specimens as well as blood samples were obtained before and during such provocation, and P-DCs were identified by their high expression of CD123 (IL-3R α-chain), together with CD45RA. Our results showed that P-DCs were present in low and variable numbers in normal nasal mucosa but increased dramatically during the allergic reaction. This accumulation concurred with the expression of the L-selectin ligand peripheral lymph node addressin on the mucosal vascular endothelium. The latter observation was particularly interesting in view of the high levels of L-selectin on circulating P-DC precursors and of previous reports suggesting that these cells can enter organized lymphoid tissue via high endothelial venules (which express peripheral lymph node addressin constitutively). Together, our findings suggested that P-DCs are involved in the triggering of airway allergy and that they are directed to allergic lesions by adhesion molecules that normally mediate leukocyte extravasation in organized lymphoid tissue.
The overall prevalence with which endogenous tumor Ags induce host T cell responses is unclear. Even when such responses are detected, they do not usually result in spontaneous remission of the cancer. We hypothesized that this might be associated with a predominant phenotype and/or cytokine profile of tumor-specific responses that is different from protective T cell responses to other chronic Ags, such as CMV. We detected significant T cell responses to CEA, HER-2/neu, and/or MAGE-A3 in 17 of 21 breast cancer patients naive to immunotherapy. The pattern of T cell cytokines produced in response to tumor-associated Ags (TAAs) in breast cancer patients was significantly different from that produced in response to CMV or influenza in the same patients. Specifically, there was a higher proportion of IL-2-producing CD8+ T cells, and a lower proportion of IFN-γ-producing CD4+ and/or CD8+ T cells responding to TAAs compared with CMV or influenza Ags. Finally, the phenotype of TAA-responsive CD8+ T cells in breast cancer patients was almost completely CD28+CD45RA− (memory phenotype). CMV-responsive CD8+ T cells in the same patients were broadly distributed among phenotypes, and contained a high proportion of terminal effector cells (CD27−CD28−CD45RA+) that were absent in the TAA responses. Taken together, these results suggest that TAA-responsive T cells are induced in breast cancer patients, but those T cells are phenotypically and functionally different from CMV- or influenza-responsive T cells. Immunotherapies directed against TAAs may need to alter these T cell signatures to be effective.
Understanding cytokine profiles of disease states has provided researchers with great insight into immunologic signaling associated with disease onset and progression, affording opportunities for advancement in diagnostics and therapeutic intervention. Multiparameter flow cytometric assays support identification of specific cytokine secreting subpopulations. Bead-based assays provide simultaneous measurement for the production of ever-growing numbers of cytokines. These technologies demand appropriate analytical techniques to extract relevant information efficiently. We illustrate the power of an analytical workflow to reveal significant alterations in T-cell cytokine expression patterns in type 1 diabetes (T1D) and breast cancer. This workflow consists of population-level analysis, followed by donor-level analysis, data transformation such as stratification or normalization, and a return to population-level analysis. In the T1D study, T-cell cytokine production was measured with a cytokine bead array. In the breast cancer study, intracellular cytokine staining measured T cell responses to stimulation with a variety of antigens. Summary statistics from each study were loaded into a relational database, together with associated experimental metadata and clinical parameters. Visual and statistical results were generated with custom Java software. In the T1D study, donor-level analysis led to the stratification of donors based on unstimulated cytokine expression. The resulting cohorts showed statistically significant differences in poststimulation production of IL-10, IL-1 beta, IL-8, and TNF beta. In the breast cancer study, the differing magnitude of cytokine responses required data normalization to support statistical comparisons. Once normalized, data showed a statistically significant decrease in the expression of IFN gamma on CD4+ and CD8+ T cells when stimulated with tumor-associated antigens (TAAs) when compared with an infectious disease antigen stimulus, and a statistically significant increase in expression of IL-2 on CD8+ T cells. In conclusion, the analytical workflow described herein yielded statistically supported and biologically relevant findings that were otherwise unapparent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.