The energy absorption capability of a composite material is critical to developing improved human safety in an automotive crash. Energy absorption is dependent on many parameters like fiber type, matrix type, fiber architecture, specimen geometry, processing conditions, fiber volume fraction, and testing speed. Changes in these parameters can cause subsequent changes in the specific energy absorption (ES) of composite materials up to a factor of 2. This paper is a detailed review of the energy absorption characteristics in polymer composite materials. An attempt is made to draw together and categorize the work done in the field of composite energy absorption that has been published in the literature in order to better understand the effect of a particular parameter on the energy absorption capability of composite materials. A description of the various test methodologies and crushing modes in composite tubes is also presented. Finally, this paper raises certain design issues by examining the work rate decay necessary to keep the deceleration below 20g during an impact crash.
This paper is a detailed review of the strain rate dependence of some mechanical properties of polymer composite materials. An attempt is made to present and summarize much of the published work relating to the effect of strain rate studies done in the past on the tensile, shear, compressive, and flexural properties of composite materials to better understand the strain rate effects on these mechanical properties of fiber-reinforced polymer composite materials.
An experimental study of the development of phase morphology in incompatible polymer melt blends of polyethylene/polystyrene (PE/PS), polyethylene/polycarbonate (PE/PC), and polyethylene/nylon‐6 (PE/N6) is presented. Different temperatures (180°C, 240°C) of mixing and polyethylene molecular‐ weight levels were used in the PE/PS studies. Little variation in the cross‐sectional phase morphology of the PE/PS extrudates was observed with these variables, though the morphology became finer with increased shear rate/stress in capillary die flow. Variations in the longitudinal morphology are observed with continuous filaments of dispersed phase only arising when the dispersed phase has an equal or lower viscosity than the continuous phase. The PE/N6 and PE/PC, especially the former, give coarser morphologies when the N6 and PC are the continuous phases. This was attributed to larger inter‐facial tensions. The effect of viscoelasticity was also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.