A full description of the human proteome relies on the challenging task of detecting mature and changing forms of protein molecules in the body. Large scale proteome analysis1 has routinely involved digesting intact proteins followed by inferred protein identification using mass spectrometry (MS)2. This “bottom up” process affords a high number of identifications (not always unique to a single gene). However, complications arise from incomplete or ambiguous2 characterization of alternative splice forms, diverse modifications (e.g., acetylation and methylation), and endogenous protein cleavages, especially when combinations of these create complex patterns of intact protein isoforms and species3. “Top down” interrogation of whole proteins can overcome these problems for individual proteins4,5, but has not been achieved on a proteome scale due to the lack of intact protein fractionation methods that are well integrated with tandem MS. Here we show, using a new four dimensional (4D) separation system, identification of 1,043 gene products from human cells that are dispersed into >3,000 protein species created by post-translational modification, RNA splicing, and proteolysis. The overall system produced >20-fold increases in both separation power and proteome coverage, enabling the identification of proteins up to 105 kilodaltons and those with up to 11 transmembrane helices. Many previously undetected isoforms of endogenous human proteins were mapped, including changes in multiply-modified species in response to accelerated cellular aging (senescence) induced by DNA damage. Integrated with the latest version of the Swiss-Prot database6, the data provide precise correlations to individual genes and proof-of-concept for large scale interrogation of whole protein molecules. The technology promises to improve the link between proteomics data and complex phenotypes in basic biology and disease research7.
A robust top down proteomics method is presented for profiling alpha-synuclein species from autopsied human frontal cortex brain tissue from Parkinson's cases and controls. The method was used to test the hypothesis that pathology associated brain tissue will have a different profile of post-translationally modified alpha-synuclein than the control samples. Validation of the sample processing steps, mass spectrometry based measurements, and data processing steps were performed. The intact protein quantitation method features extraction and integration of m/z data from each charge state of a detected alpha-synuclein species and fitting of the data to a simple linear model which accounts for concentration and charge state variability. The quantitation method was validated with serial dilutions of intact protein standards. Using the method on the human brain samples, several previously unreported modifications in alpha-synuclein were identified. Low levels of phosphorylated alpha synuclein were detected in brain tissue fractions enriched for Lewy body pathology and were marginally significant between PD cases and controls (p = 0.03).
Despite the availability of ultra-high resolution mass spectrometers, methods for separation and detection of intact proteins for proteome-scale analyses are still in a developmental phase. Here we report robust protocols for on-line LC-MS to drive high-throughput top-down proteomics in a fashion similar to bottom-up. Comparative work on protein standards showed that a polymeric stationary phase led to superior sensitivity over a silica-based medium in reversed-phase nanocapillary-LC, with detection of proteins >50 kDa routinely accomplished in the linear ion trap of a hybrid FourierTransform mass spectrometer. Protein identification was enabled by nozzle-skimmer dissociation (NSD) and detection of fragment ions with <5 ppm mass accuracy for highly-specific database searching using custom software. This overall approach led to identification of proteins up to 80 kDa, with 10-60 proteins identified in single LC-MS runs of samples from yeast and human cell lines prefractionated by their molecular weight using a gel-based sieving system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.