The cellular alterations associated with skeletal muscle differentiation share a high degree of similarity with key phenotypic changes usually ascribed to apoptosis. For example, actin fiber disassembly͞reorga-nization is a conserved feature of both apoptosis and differentiating myoblasts and the conserved muscle contractile protein, myosin light chain kinase, is required for the apoptotic feature of membrane blebbing. As such, these observations suggest that the induction of differentiation and apoptosis in the myogenic lineage may use overlapping cellular mechanisms. Here, we report that skeletal muscle differentiation depends on the activity of the key apoptotic protease, caspase 3. Peptide inhibition of caspase 3 activity or homologous deletion of caspase 3 leads to dramatic reduction in both myotube͞ myofiber formation and expression of muscle-specific proteins. Subsequently, we have identified Mammalian Sterile Twenty-like kinase as a crucial caspase 3 effector in this cellular process. Mammalian Sterile Twenty-like kinase is cleavage-activated by caspase 3, and restoration of this truncated kinase in caspase 3 null myoblasts restores the differentiation phenotype. Taken together, these results confirm a unique and unanticipated role for a caspase 3-mediated signal cascade in the promotion of myogenesis.
Flagellins from three strains of Campylobacter jejuni and one strain of Campylobacter coli were shown to be extensively modified by glycosyl residues, imparting an approximate 6000-Da shift from the molecular mass of the protein predicted from the DNA sequence. Tryptic peptides from C. jejuni 81-176 flagellin were subjected to capillary liquid chromatography-electrospray mass spectrometry with a high/low orifice stepping to identify peptide segments of aberrant masses together with their corresponding glycosyl appendages. These modified peptides were further characterized by tandem mass spectrometry and preparative high performance liquid chromatography followed by nano-NMR spectroscopy to identify the nature and precise site of glycosylation. These analyses have shown that there are 19 modified Ser/Thr residues in C. jejuni 81-176 flagellin. The predominant modification found on C. jejuni flagellin was O-linked 5,7-diacetamido-3,5,7,9-tetradeoxy-Lglycero-L-manno-nonulosonic acid (pseudaminic acid, Pse5Ac7Ac) with additional heterogeneity conferred by substitution of the acetamido groups with acetamidino and hydroxyproprionyl groups. In C. jejuni 81-176, the gene Cj1316c, encoding a protein of unknown function, was shown to be involved in the biosynthesis and/or the addition of the acetamidino group on Pse5Ac7Ac. Glycosylation is not random, since 19 of the total 107 Ser/Thr residues are modified, and all but one of these are restricted to the central, surface-exposed domain of flagellin when folded in the filament. The mechanism of attachment appears unrelated to a consensus peptide sequence but is rather based on surface accessibility of Ser/Thr residues in the folded protein.
The Campylobacter jejuni pgl locus encodes an N-linked protein glycosylation machinery that can be functionally transferred into Escherichia coli. In this system, we analyzed the elements in the C. jejuni N-glycoprotein AcrA required for accepting an N-glycan. We found that the eukaryotic primary consensus sequence for N-glycosylation is N terminally extended to D/E-Y-N-X-S/T (Y, X not equalP) for recognition by the bacterial oligosaccharyltransferase (OST) PglB. However, not all consensus sequences were N-glycosylated when they were either artificially introduced or when they were present in non-C. jejuni proteins. We were able to produce recombinant glycoproteins with engineered N-glycosylation sites and confirmed the requirement for a negatively charged side chain at position -2 in C. jejuni N-glycoproteins. N-glycosylation of AcrA by the eukaryotic OST in Saccharomyces cerevisiae occurred independent of the acidic residue at the -2 position. Thus, bacterial N-glycosylation site selection is more specific than the eukaryotic equivalent with respect to the polypeptide acceptor sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.