Rhizobial bacteria enter a symbiotic interaction with legumes, activating diverse responses in roots through the lipochito oligosaccharide signaling molecule Nod factor. Here, we show that NSP2 from Medicago truncatula encodes a GRAS protein essential for Nod-factor signaling. NSP2 functions downstream of Nod-factor-induced calcium spiking and a calcium/calmodulin-dependent protein kinase. We show that NSP2-GFP expressed from a constitutive promoter is localized to the endoplasmic reticulum/nuclear envelope and relocalizes to the nucleus after Nod-factor elicitation. This work provides evidence that a GRAS protein transduces calcium signals in plants and provides a possible regulator of Nod-factor-inducible gene expression.
The symbiotic association between legumes and nitrogen-fixing bacteria collectively known as rhizobia results in the formation of a unique plant root organ called the nodule. This process is initiated following the perception of rhizobial nodulation factors by the host plant. Nod factor (NF)-stimulated plant responses, including nodulation-specific gene expression, is mediated by the NF signaling pathway. Plant mutants in this pathway are unable to nodulate. We describe here the cloning and characterization of two mutant alleles of the Medicago truncatula ortholog of the Lotus japonicus and pea (Pisum sativum) NIN gene. The Mtnin mutants undergo excessive root hair curling but are impaired in infection and fail to form nodules following inoculation with Sinorhizobium meliloti. Our investigation of early NF-induced gene expression using the reporter fusion ENOD11TGUS in the Mtnin-1 mutant demonstrates that MtNIN is not essential for early NF signaling but may negatively regulate the spatial pattern of ENOD11 expression. It was recently shown that an autoactive form of a nodulation-specific calcium/calmodulin-dependent protein kinase is sufficient to induce nodule organogenesis in the absence of rhizobia. We show here that MtNIN is essential for autoactive calcium/calmodulin-dependent protein kinase-induced nodule organogenesis. The non-nodulating hcl mutant has a similar phenotype to Mtnin, but we demonstrate that HCL is not required in this process. Based on our data, we suggest that MtNIN functions downstream of the early NF signaling pathway to coordinate and regulate the correct temporal and spatial formation of root nodules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.