A comprehensive overview of the equation of motion coupled-cluster (EOM-CC) method and its application to molecular systems is presented. By exploiting the biorthogonal nature of the theory, it is shown that excited state properties and transition strengths can be evaluated via a generalized expectation value approach that incorporates both the bra and ket state wave functions. Reduced density matrices defined by this procedure are given by closed form expressions. For the root of the EOM-CC effective Hamiltonian that corresponds to the ground state, the resulting equations are equivalent to the usual expressions for normal single-reference CC density matrices. Thus, the method described in this paper provides a universal definition of coupled-cluster density matrices, providing a link between EOM-CC and traditional ground state CC theory. Excitation energy, oscillator strength, and property calculations are illustrated by means of several numerical examples, including comparisons with full configuration interaction calculations and a detailed study of the ten lowest electronically excited states of the cyclic isomer of C 4 .
A theoretical model chemistry designed to achieve high accuracy for enthalpies of formation of atoms and small molecules is described. This approach is entirely independent of experimental data and contains no empirical scaling factors, and includes a treatment of electron correlation up to the full coupled-cluster singles, doubles, triples and quadruples approach. Energies are further augmented by anharmonic zero-point vibrational energies, a scalar relativistic correction, first-order spin-orbit coupling, and the diagonal Born-Oppenheimer correction. The accuracy of the approach is assessed by several means. Enthalpies of formation (at 0 K) calculated for a test suite of 31 atoms and molecules via direct calculation of the corresponding elemental formation reactions are within 1 kJ mol(-1) to experiment in all cases. Given the quite different bonding environments in the product and reactant sides of these reactions, the results strongly indicate that even greater accuracy may be expected in reactions that preserve (either exactly or approximately) the number and types of chemical bonds.
ACES 11, a new program system for ub initio electronic structure calculations is described. The strengths of ACES 11 involve the use of many-body perturbation theory (MBFT) and coupled-cluster (cc) theory for calculating the energy, geometry, spectra, and properties of small-to medium-sized molecules. This paper gives a brief overview of the ACES II project, describes many features of the program system, and documents a number of benchmark calculations. 0 1992 John Wiley & Sons, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.