The pathogenic bacterium Pseudomonas aeruginosa causes serious infections in immunocompromised patients. N-(3-Oxododecanoyl)-L-homoserine lactone (3OC12-HSL) is a key component of P. aeruginosa's quorum-sensing system and regulates the expression of many virulence factors. 3OC12-HSL was previously shown to be hydrolytically inactivated by the paraoxonase (PON) family of calcium-dependent esterases, consisting of PON1, PON2, and PON3. Here we determined the specific activities of purified human PONs for 3OC12-HSL hydrolysis, including the common PON1 polymorphic forms, and found they were in the following order: PON2 Ͼ Ͼ PON1 192R > PON1 192Q > PON3. PON2 exhibited a high specific activity of 7.6 ؎ 0.4 mols/min/mg at 10 M 3OC12-HSL, making it the best PON2 substrate identified to date. By use of class-specific inhibitors, approximately 85 and 95% of the 3OC12-HSL lactonase activity were attributable to PON1 in mouse and human sera, respectively. In mouse liver homogenates, the activity was metal dependent, with magnesium-and manganese-dependent lactonase activities comprising 10 to 15% of the calcium-dependent activity. In mouse lung homogenates, all of the activity was calcium dependent. The calcium-dependent activities were irreversibly inhibited by extended EDTA treatment, implicating PONs as the major enzymes inactivating 3OC12-HSL. In human HepG2 and EA.hy 926 cell lysates, the 3OC12-HSL lactonase activity closely paralleled the PON2 protein levels after PON2 knockdown by small interfering RNA treatment of the cells. These findings suggest that PONs, particularly PON2, could be an important mechanism by which 3OC12-HSL is inactivated in mammals.Pseudomonas aeruginosa is an opportunistic bacterium which causes serious infections in immunocompromised and cystic fibrosis patients (10). As with many gram-negative bacteria, P. aeruginosa produces acyl-homoserine lactone (AHL) quorumsensing (QS) signaling molecules termed autoinducers which allow the single-celled organisms to coordinate their actions (36). N-(3-Oxododecanoyl)-L-homoserine lactone (3OC12-HSL) is a key autoinducer synthesized by P. aeruginosa which regulates the expression of extracellular virulence factors and biofilm formation (5, 36). Rats and mice experimentally infected with P. aeruginosa mutants deficient in the ability to produce or respond to 3OC12-HSL exhibited significantly diminished lung pathology, bacterial dissemination, and morbidity and accelerated bacterial clearance compared to animals infected with wild-type bacteria, demonstrating the importance of 3OC12-HSL for P. aeruginosa pathogenicity (14,21,27,31,40). 3OC12-HSL also has an array of immunomodulatory effects on eukaryotic cells, including the induction of apoptosis, inhibition of leukocyte proliferation, activation of neutrophils and macrophages, and induction of proinflammatory mediators (7,15,34,37,39,43). Recently, it was shown that a number of mammalian cell lines were able to inactive 3OC12-HSL (5), providing a possible mechanism for reduction of bacterial virulence.Mam...