1. The distribution of creatine and the creatine-synthesizing enzymes in the animal kingdom has been investigated. Creatine was found in tissues of all vertebrates examined, and in various invertebrates from phyla Annelida, Echinodermata, Hemichordata and Chordata, subphylum Cephalochordata. The activities of the creatine-synthesizing enzymes, arginine–glycine transamidinase and guanidinoacetate methylpherase, were not detected in the hagfish or in any of the invertebrates, including those in which creatine was found, with the exception that transamidinase activities were detected in the amphioxus and salt water clam; however, these activities are considered to be artifacts for reasons mentioned in the text. Additional evidence that the hagfish and various creatine-containing invertebrates could not synthesize creatine was the observation that these animals did not convert one or the other of the likely precursors of creatine (arginine and glycine) into creatine, in vivo. Further, the inability of these animals to synthesize creatine is correlated with the observations that all animals tested were able to abstract creatine from their aqueous environment. 2. The activities of the creatine-synthesizing enzymes were detected in the sea lamprey and in all but a few of the other vertebrates examined. Neither activity could be detected in the sharks and rays (cartilaginous fish), buffalo fish (bony fish) or the snapping turtle. Transamidinase or guanidinoacetate methylpherase activity could not be found in the salamander or garter snake, respectively. 3. The results obtained with the lamprey are in direct contrast with those obtained with the hagfish (both subphylum Agnatha, class Cyclostomata). The lamprey had the ability to synthesize creatine and did not abstract creatine from lake water. The hagfish did not have any apparent ability to synthesize creatine and did abstract creatine from sea water. The present report thus supports the theory that the myxinoid (hagfish) and petromyzoid (lamprey) agnathans are only distantly related. 4. The lack of creatine-synthesizing enzyme activities in the cartilaginous fishes may have phylogenetic significance, but may also be explained by the availability of creatine in the diet of these animals. The lack of one or both enzyme activities in vertebrates other than the hagfish and the cartilaginous fish is suggested to be the result of creatine in the diet.
Creatine is a major component of energy metabolism and enzymes involved in its synthesis have therefore been of considerable interest. L-arginine-glycine amidinotransferase, commonly called transamidinase, catalyzes the first reaction in the biosynthesis of creatine. This first reaction is believed to occur in the kidney because of the high concentration of transamidinase in that tissue. Transamidinase activity is also found in many other tissues of the rat, but its role in these tissues is not known. Immunochemical studies with antisera and monoclonal antibodies were used to confirm and refine our understanding of the presence of transamidinase in rat tissues. Immunofluorescence histochemistry was performed to localize transamidinase immunoreactivity within specific tissues including cells in the proximal tubules of the kidney, hepatocytes of the liver, and alpha cells of the pancreatic islet. Immunochemical studies with monoclonal antibodies confirm localization of transamidinase immunoreactivity in the proximal tubules of the kidney. The localization of such immunoreactivity in specialized cells yields insight into possible physiological role(s) of transamidinase in the rat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.