No abstract
An adequate supply of safe drinking water is one of the major prerequisites for a healthy life, but waterborne disease is still a major cause of death in many parts of the world, particularly in children, and it is also a significant economic constraint in many subsistence economies. The basis on which drinking water safety is judged is national standards or international guidelines. The most important of these are the WHO Guidelines for Drinking Water Quality. The quality of drinking water and possible associated health risks vary throughout the world with some regions showing, for example, high levels of arsenic, fluoride or contamination of drinking water by pathogens, whereas elsewhere these are very low and no problem. Marked variations also occur on a more local level within countries due, for example, to agricultural and industrial activities. These and others are discussed in this chapter.
We investigated the association between total trihalomethanes (TTHMs) and risk of stillbirth and low and very low birth weight in three water regions in England, 1992–1998; associations with individual trihalomethanes (THMs) were also examined. Modeled estimates of quarterly TTHM concentrations in water zones, categorized as low (< 30 μg/L), medium (30–59 μg/L), or high (≥60 μg/L), were linked to approximately 1 million routine birth and stillbirth records using maternal residence at time of birth. In one region, where there was a positive socioeconomic deprivation gradient across exposure categories, there was also a positive, significant association of TTHM with risk of stillbirth and low and very low birth weight. Overall summary estimates across the three regions using a random-effects model to allow for between-region heterogeneity in exposure effects showed small excess risks in areas with high TTHM concentrations for stillbirths [odds ratio (OR) = 1.11; 95% confidence interval (CI), 1.00–1.23), low birth weight (OR = 1.09; 95% CI, 0.93–1.27), and very low birth weight (OR = 1.05; 95% CI, 0.82–1.34). Among the individual THMs, chloroform showed a similar pattern of risk as TTHM, but no association was found with concentrations of bromodichloromethane or total brominated THMs. Our findings overall suggest a significant association of stillbirths with maternal residence in areas with high TTHM exposure. Further work is needed looking at cause-specific stillbirths and effects of other disinfection by-products and to help differentiate between alternative (noncausal) explanations and those that may derive from the water supply.
BackgroundIncreased risk of various congenital anomalies has been reported to be associated with trihalomethane (THM) exposure in the water supply.ObjectivesWe conducted a registry-based study to determine the relationship between THM concentrations and the risk of congenital anomalies in England and Wales.MethodsWe obtained congenital anomaly data from the National Congenital Anomalies System, regional registries, and the national terminations registry; THM data were obtained from water companies. Total THM (< 30, 30 to < 60, ≥60 μg/L), total brominated exposure (< 10, 10 to < 20, ≥20 μg/L), and bromoform exposure (< 2, 2 to < 4, ≥4 μg/L) were modeled at the place of residence for the first trimester of pregnancy. We included 2,605,226 live births, stillbirths, and terminations with 22,828 cases of congenital anomalies. Analyses using fixed- and random-effects models were performed for broadly defined groups of anomalies (cleft palate/lip, abdominal wall, major cardiac, neural tube, urinary and respiratory defects), a more restricted set of anomalies with better ascertainment, and for isolated and multiple anomalies. Data were adjusted for sex, maternal age, and socioeconomic status.ResultsWe found no statistically significant trends across exposure categories for either the broadly defined or more restricted sets of anomalies. For the restricted set of anomalies with isolated defects, there were significant (p < 0.05) excess risks in the high-exposure categories of total THMs for ventricular septal defects [odds ratio (OR) = 1.43; 95% confidence interval (CI), 1.00–2.04] and of bromoform for major cardiovascular defects and gastroschisis (OR = 1.18; 95% CI, 1.00–1.39; and OR = 1.38; 95% CI, 1.00–1.92, respectively).ConclusionIn this large national study we found little evidence for a relationship between THM concentrations in drinking water and risk of congenital anomalies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.