Eighteen healthy subjects had arterialized hand and renal veins catheterized after an overnight fast. Systemic and renal glucose and glycerol kinetics were measured with [6,6-2H2]glucose and [2-13C]glycerol before and after 180-min peripheral infusions of insulin at 0.125 (LO) or 0.25 (HI) mU ⋅ kg−1 ⋅ min−1with variable [6,6-2H2]dextrose or saline (control). Renal plasma flow was determined by plasma p-aminohippurate clearance. Arterial insulin increased from 37 ± 8 to 53 ± 5 (LO) and to 102 ± 10 pM (HI, P < 0.01) but not in control (35 ± 8 pM). Arterial glucose did not change and averaged 5.2 ± 0.1 (control), 4.7 ± 0.2 (LO), and 5.1 ± 0.2 (HI) μmol/ml; renal vein glucose decreased from 4.8 ± 0.2 to 4.5 ± 0.2 μmol/ml (LO) and from 5.3 ± 0.2 to 4.9 ± 0.1 μmol/ml (HI) with insulin but not saline infusion (5.3 ± 0.1 μmol/ml). Endogenous glucose production decreased from 9.9 ± 0.7 to 6.9 ± 0.5 (LO) and to 5.7 ± 0.5 (HI) μmol ⋅ kg−1 ⋅ min−1; renal glucose production decreased from 2.5 ± 0.6 to 1.5 ± 0.5 (LO) and to 1.2 ± 0.6 (HI) μmol ⋅ kg−1 ⋅ min−1, whereas renal glucose utilization increased from 1.5 ± 0.6 to 2.6 ± 0.7 (LO) and to 2.9 ± 0.7 (HI) μmol ⋅ kg−1 ⋅ min−1after insulin infusion (all P < 0.05 vs. baseline). Neither endogenous glucose production (10.0 ± 0.4), renal glucose production (1.1 ± 0.4), nor renal glucose utilization (0.8 ± 0.4) changed in the control group. During insulin infusion, systemic gluconeogenesis from glycerol decreased from 0.67 ± 0.05 to 0.18 ± 0.02 (LO) and from 0.60 ± 0.04 to 0.20 ± 0.02 (HI) μmol ⋅ kg−1 ⋅ min−1( P < 0.01), and renal gluconeogenesis from glycerol decreased from 0.10 ± 0.02 to 0.02 ± 0.02 (LO) and from 0.15 ± 0.03 to 0.09 ± 0.03 (HI) μmol ⋅ kg−1 ⋅ min−1( P < 0.05). In contrast, during saline infusion, systemic (0.66 ± 0.03 vs. 0.82 ± 0.05 μmol ⋅ kg−1 ⋅ min−1) and renal gluconeogenesis from glycerol (0.11 ± 0.02 vs. 0.41 ± 0.04 μmol ⋅ kg−1 ⋅ min−1) increased ( P < 0.05 vs. baseline). We conclude that glucose production and utilization by the kidney are important insulin-responsive components of glucose metabolism in humans.
To examine the potential contribution of precursor substrates to renal gluconeogenesis during hypoglycemia, 14 healthy subjects had arterialized hand vein and renal vein (under fluoroscopy) catheterized after an overnight fast. Net renal balance of lactate, glycerol, alanine, and glutamine was determined simultaneously with systemic and renal glucose kinetics using arteriovenous concentration differences and 6-[ ) during hypoglycemia versus euglycemia (P < 0.05) could account for nearly 60% of all glucose carbons released in the renal vein during hypoglycemia. Our data indicate that extraction of circulating gluconeogenic precursors by the kidney is enhanced and responsible for a substantial fraction of the compensatory rise in RGP during sustained hypoglycemia. Increased renal gluconeogenesis from circulating substrates represents an additional physiological mechanism by which the decrease in blood glucose concentration is attenuated in humans. Diabetes
We investigated the effects of hypoglycemia on renal glucose production (RGP) and renal glucose uptake (RGU) using arteriovenous balance combined with tracer technique in humans. Our 14 healthy subjects had arterialized hand veins (artery) and renal veins (under fluoroscopy) catheterized after an overnight fast. Systemic and renal glucose kinetics were measured with infusion of [6-(2)H2]glucose, and renal plasma flow was measured by para-aminohippurate clearance. After a 150-min equilibration period, artery and renal vein samples were obtained between -30 and 0 min, and subjects received a 180-min peripheral insulin infusion (0.250 mU kg(-1) x min(-1)) with a variable infusion of [6-(2)H2]dextrose adjusted to maintain plasma glucose at either approximately 60 mg/dl (hypoglycemic clamp) or approximately 90 mg/dl (euglycemic clamp). Blood samples were obtained between 150 and 180 min during the study period. Insulin increased from 49 +/- 14 to 130 +/- 25 (hypoglycemia) and to 102 +/- 10 (euglycemia) pmol/l. Glucose decreased from 5.32 +/- 0.11 to 3.58 +/- 0.07 micromol/ml during hypoglycemia, but it did not change during euglycemia (5.20 +/- 0.19 vs. 5.05 +/- 0.15 micromol/ml). Endogenous glucose production decreased (9.30 +/- 0.70 vs. 5.65 +/- 0.50) during euglycemia but not during hypoglycemia (9.80 +/- 0.50 vs. 10.25 +/- 0.60 micromol x kg(-1) x min(-1)). During hypoglycemia, net renal glucose output increased from 0.54 +/- 0.30 to 2.31 +/- 0.40, RGP increased from 1.88 +/- 0.70 to 3.65 +/- 0.50 (P < 0.05), and RGU did not change (1.34 +/- 0.50 vs. 1.34 +/- 0.60 micromol x kg(-1) x min(-1)). During euglycemia, renal glucose balance switched from a net output of 0.72 +/- 0.20 to a net uptake of 1.70 +/- 0.92, RGP decreased from 2.31 +/- 0.50 to 1.20 +/- 0.58, and RGU increased from 1.59 +/- 0.50 to 2.90 +/- 0.70 micromol x kg(-1) x min(-1) (P < 0.05). During hypoglycemia, arterial glucagon increased from 105 +/- 6 to 129 +/- 8, epinephrine increased from 116 +/- 28 to 331 +/- 33, norepinephrine increased from 171 +/- 9 to 272 +/- 9 (all P < 0.05), and renal vein norepinephrine increased from 236 +/- 13 to 426 +/- 50 (P < 0.001). These data indicate that, in addition to counterregulatory hormones, activation of the autonomic nervous system during hypoglycemia stimulates glucose production by the kidney, which may represent an important additional component of the body's defense against hypoglycemia in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.