▪ Abstract The single-point statistics of turbulence in the ‘roughness sub-layer’ occupied by the plant canopy and the air layer just above it differ significantly from those in the surface layer. The mean velocity profile is inflected, second moments are strongly inhomogeneous with height, skewnesses are large, and second-moment budgets are far from local equilibrium. Velocity moments scale with single length and time scales throughout the layer rather than depending on height. Large coherent structures control turbulence dynamics. Sweeps rather than ejections dominate eddy fluxes and a typical large eddy consists of a pair of counter-rotating streamwise vortices, the downdraft between the vortex pair generating the sweep. Comparison with the statistics and instability modes of the plane mixing layer shows that the latter rather than the boundary layer is the appropriate model for canopy flow and that the dominant large eddies are the result of an inviscid instability of the inflected mean velocity profile. Aerodynamic drag on the foliage is the cause both of the unstable inflected velocity profile and of a ‘spectral short cut’ mechanism that removes energy from large eddies and diverts it to fine scales, where it is rapidly dissipated, bypassing the inertial eddy-cascade. Total dissipation rates are very large in the canopy as a result of the fine-scale shear layers that develop around the foliage.
This paper argues that the active turbulence and coherent motions near the top of a vegetation canopy are patterned on a plane mixing layer, because of instabilities associated with the characteristic strong inflection in the mean velocity profile. Mixing-layer turbulence, formed around the inflectional mean velocity profile which develops between two coflowing streams of different velocities, differs in several ways from turbulence in a surface layer. Through these differences, the mixing-layer analogy provides an explanation for many of the observeddistinctive features of canopy turbulence. These include: (a) ratios between components of the Reynolds stress tensor; (b) the ratio KH/KM of the eddy diffusivities for heat and momentum; (c) the relative roles of ejections and sweeps; (d) the behaviour of the turbulent energy balance, particularly the major role of turbulent transport; and (e) the behaviour of the turbulent length scales of the active coherent motions (the dominant eddies responsible for vertical transfer near the top of the canopy). It is predicted that these length scales are controlled by the shear length scale L, = U(h)/U'(h) (where h is canopy height, U(z) is mean velocity as a function of height Z, and U' = dU/dz). In particular, the streamwise spacing of the dominant canopy eddies is A, = mL,, with m = 8.1. These predictions are tested against many sets of field and wind-tunnel data. We propose a picture of canopy turbulence in which eddies associated with inflectional instabilities are modulated by larger-scale, inactive turbulence, which is quasi-horizontal on the scale of the canopy.
We compare the turbulence statistics of the canopy/roughness sublayer (RSL) and the inertial sublayer (ISL) above. In the RSL the turbulence is more coherent and more efficient at transporting momentum and scalars and in most ways resembles a turbulent mixing layer rather than a boundary layer. To understand these differences we analyse a large-eddy simulation of the flow above and within a vegetation canopy. The three-dimensional velocity and scalar structure of a characteristic eddy is educed by compositing, using local maxima of static pressure at the canopy top as a trigger. The characteristic eddy consists of an upstream head-down sweep-generating hairpin vortex superimposed on a downstream head-up ejection-generating hairpin. The conjunction of the sweep and ejection produces the pressure maximum between the hairpins, and this is also the location of a coherent scalar microfront. This eddy structure matches that observed in simulations of homogeneous-shear flows and channel flows by several workers and also fits with earlier field and wind-tunnel measurements in canopy flows. It is significantly different from the eddy structure educed over smooth walls by conditional sampling based only on ejections as a trigger. The characteristic eddy was also reconstructed by empirical orthogonal function (EOF) analysis, when only the dominant, sweep-generating head-down hairpin was recovered, prompting a re-evaluation of earlier results based on EOF analysis of wind-tunnel data. A phenomenological model is proposed to explain both the structure of the characteristic eddy and the key differences between turbulence in the canopy/RSL and the ISL above. This model suggests a new scaling length that can be used to collapse turbulence moments over vegetation canopies. IntroductionWithin the inertial sublayer (ISL) of high-Reynolds-Number rough-wall boundary layers, the mean wind profile is close to logarithmic and the log law relates the momentum flux to the mean wind gradient in a convenient form that is exploited in measurements and predictive models. When buoyancy forces are present, Monin-Obukhov similarity theory (MOST) introduces an extra length scale -the Obukhov length L -allowing the log law to be extended to diabatic conditions and providing the theoretical basis for surface-layer meteorology. It has been known for a considerable time, however, that sufficiently close to a rough surface, MOST formulae must be modified to reflect changes in the character of the turbulence (Thom et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.