The traditional analog approach is insufficient to meet the formidable challenge brought forth by MDR superbugs. With the disappointing results of the genomics approach for delivering novel targets and drug candidates, alternative strategies to permeate the bacterial cell membrane, enhance influx, disrupt efflux, and target specific pathogens via therapeutic antibodies are attractive and promising. Coupled with incentivized business models, governmental policies, and a clarified regulatory pathway, it is hoped that the antibiotic pipeline will be filled with an effective armamentarium to safeguard global health.
We further develop an approach to identify the braiding statistics associated to a given fractional quantum Hall state through adiabatic transport of quasiparticles. This approach is based on the notion of adiabatic continuity between quantum Hall states on the torus and simple product statesor "patterns"-in the thin torus limit, together with a suitable coherent state ansatz for localized quasiholes that respects the modular invariance of the torus. We give a refined and unified account of the application of this method to the Laughlin and Moore-Read states, which may serve as a pedagogical introduction to the nuts and bolts of this technique. Our main result is that the approach is also applicable-without further assumptions-to more complicated non-Abelian states. We demonstrate this in great detail for the level k = 3 Read-Rezayi state at filling factor ν = 3/2. These results may serve as an independent check of other techniques, where the statistics are inferred from conformal block monodromies. Our approach has the benefit of giving rise to intuitive pictures representing the transformation of topological sectors during braiding, and allows for a self-consistent derivation of non-Abelian statistics without heavy mathematical machinery.for the present gauge, and the orbitals ϕ n (z) satisfying these conditions are then simply obtained by "repeating"
We analyze the effect of exchanging quasiholes described by Gaffnian quantum Hall trial state wave functions. This exchange is carried out via adiabatic transport using the recently developed coherent state Ansatz. We argue that our Ansatz is justified if the Gaffnian parent Hamiltonian has a charge gap, even though it is gapless to neutral excitations, and may therefore properly describe the adiabatic transport of Gaffnian quasiholes. For nonunitary states such as the Gaffnian, the result of adiabatic transport cannot agree with the monodromies of the conformal block wave functions, and may or may not lead to well-defined anyon statistics. Using the coherent state Ansatz, we find two unitary solutions for the statistics, one of which agrees with the statistics of the non-Abelian spin-singlet state by Ardonne and Schoutens.Comment: 11 pages, 4 figure
Since the early 2000’s, much of the neuroimaging work at Washington University (WU) has been facilitated by the Central Neuroimaging Data Archive (CNDA), an XNAT-based imaging informatics system. The CNDA is uniquely related to XNAT, as it served as the original codebase for the XNAT open source platform. The CNDA hosts data acquired in over 1000 research studies, encompassing 36,000 subjects and more than 60,000 imaging sessions. Most imaging modalities used in modern human research are represented in the CNDA, including magnetic resonance (MR), positron emission tomography (PET), computed tomography (CT), nuclear medicine (NM), computed radiography (CR), digital radiography (DX), and ultrasound (US). However, the majority of the imaging data in the CNDA are MR and PET of the human brain. Currently, about 20% of the total imaging data in the CNDA is available by request to external researchers. CNDA’s available data includes large sets of imaging sessions and in some cases clinical, psychometric, tissue, or genetic data acquired in the study of Alzheimer’s disease, brain metabolism, cancer, HIV, sickle cell anemia, and Tourette syndrome.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.